Multiple kernel learning using composite kernel functions

被引:7
|
作者
Shiju, S. S. [1 ]
Salim, Asif [1 ]
Sumitra, S. [1 ]
机构
[1] Indian Inst Space Sci & Technol, Dept Math, Thiruvananthapuram, Kerala, India
关键词
Multiple kernel learning; Classification; Reproducing kernel; Support vector machine; Composite kernel functions;
D O I
10.1016/j.engappai.2017.06.026
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multiple Kernel Learning (MKL) algorithms deals with learning the optimal kernel from training data along with learning the function that generates the data. Generally in MKL, the optimal kernel is defined as a combination of kernels under consideration (base kernels). In this paper, we formulated MKL using composite kernel functions (MKLCKF), in which the optimal kernel is represented as the linear combination of composite kernel functions. Corresponding to each data point a composite kernel function is designed whose domain is constructed as the direct product of the range space of base kernels, so that the composite kernels make use of the information of all the base kernels for finding their image. Thus MKLCKF has three layers in which the first layer consists of base kernels, the second layer consists of composite kernels and third layer is the optimal kernel which is a linear combination of the composite kernels. For making the algorithm more computationally effective, we formulated one more variation of the algorithm in which the coefficients of the linear combination are replaced with a similarity function that captures the local properties of the input data. We applied the proposed approach on a number of artificial intelligence applications and compared its performance with that of the other state-of-the-art techniques. Data compression techniques had been used for applying the models on large data, that is, for large scale classification, dictionary learning while for large scale regression pre-clustering approach had been applied. On the basis of the performance, rank was assigned to each model we used for analysis, The proposed models scored higher rank than the other models we used for comparison. We analyzed the performance of the MKLCKF model by incorporating with kernelized locally sensitive hashing (KLSH) also and the results were found to be promising. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:391 / 400
页数:10
相关论文
共 50 条
  • [31] Bilinear Generating Functions in Kernel Sparse Modeling and Learning Towards the kernel engineering
    Lu, Zhao
    Yan, Wen
    Wu, Qi
    2017 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2017, : 769 - 776
  • [32] Deep Kernel Learning-Based Bayesian Optimization with Adaptive Kernel Functions
    Wang, Xizhe
    Hong, Xufeng
    Pang, Quanquan
    Jiang, Benben
    IFAC PAPERSONLINE, 2023, 56 (02): : 5531 - 5535
  • [33] Multiple Kernel Feature Fusion Using Kernel Fisher Method
    Yang, Bo
    MEASUREMENT TECHNOLOGY AND ENGINEERING RESEARCHES IN INDUSTRY, PTS 1-3, 2013, 333-335 : 1406 - 1409
  • [34] Large scale multiple kernel learning
    Sonnenburg, Soeren
    Raetsch, Gunnar
    Schaefer, Christin
    Schoelkopf, Bernhard
    JOURNAL OF MACHINE LEARNING RESEARCH, 2006, 7 : 1531 - 1565
  • [35] A Unifying View of Multiple Kernel Learning
    Kloft, Marius
    Rueckert, Ulrich
    Bartlett, Peter L.
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT II: EUROPEAN CONFERENCE, ECML PKDD 2010, 2010, 6322 : 66 - 81
  • [36] Domain Transfer Multiple Kernel Learning
    Duan, Lixin
    Tsang, Ivor W.
    Xu, Dong
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (03) : 465 - 479
  • [37] Feature weighted multiple kernel learning
    Wang, Tinghua
    Liu, Fulai
    Yan, Shenhai
    Chen, Junting
    Journal of Computational and Theoretical Nanoscience, 2015, 12 (11) : 4755 - 4760
  • [38] Multiple Kernel Learning with Gaussianity Measures
    Hino, Hideitsu
    Reyhani, Nima
    Murata, Noboru
    NEURAL COMPUTATION, 2012, 24 (07) : 1853 - 1881
  • [39] Localized algorithms for multiple kernel learning
    Gonen, Mehmet
    Alpaydin, Ethem
    PATTERN RECOGNITION, 2013, 46 (03) : 795 - 807
  • [40] Multiple Kernel Representation Learning on Networks
    Celikkanat, Abdulkadir
    Shen, Yanning
    Malliaros, Fragkiskos D.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (06) : 6113 - 6125