A continuum phase field model for fracture

被引:443
|
作者
Kuhn, Charlotte [1 ]
Muller, Ralf [1 ]
机构
[1] Tech Univ Kaiserslautern, D-67653 Kaiserslautern, Germany
关键词
Fracture; Phase field; Energy momentum tensor (Eshelby tensor); Energy release rate; J integral; Finite elements;
D O I
10.1016/j.engfracmech.2010.08.009
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A phase field model based on a regularized version of the variational formulation of brittle fracture is Introduced The influences of the regularization parameter that controls the Interface width between broken and undamaged material and of the mobility constant of the evolution equation are studied in finite element simulations A generalized Eshelby tensor is derived and analyzed for mode I loading in order to evaluate the energy release rate of the diffuse phase field cracks The numerical implementation is performed with finite elements and an implicit time integration scheme The configurational forces are computed in a postprocessing step after the coupled problem of mechanical balance equations and the evolution equation is solved Some of the numerical results are compared to analytical results from classical Griffith theory (C) 2010 Elsevier Ltd All rights reserved
引用
收藏
页码:3625 / 3634
页数:10
相关论文
共 50 条
  • [21] A phase-field model for fracture in biological tissues
    Arun Raina
    Christian Miehe
    Biomechanics and Modeling in Mechanobiology, 2016, 15 : 479 - 496
  • [22] A spatially adaptive phase-field model of fracture
    Phansalkar, Dhananjay
    Weinberg, Kerstin
    Ortiz, Michael
    Leyendecker, Sigrid
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 395
  • [23] Framework and Numerical Algorithm for a Phase Field Fracture Model
    Karthik, S.
    Nasedkina, A.
    Nasedkin, A.
    Rajagopal, A.
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2023, 13 (01) : 162 - 176
  • [24] GPFniCS: A generalised phase field method to model fracture
    Kumar, Manish
    Alessi, Roberto
    Salvati, Enrico
    SOFTWAREX, 2023, 24
  • [25] Validation of the Phase-Field Model for Brittle Fracture
    Seles, Karlo
    Tomic, Zoran
    Tonkovic, Zdenko
    Gubeljak, Nenad
    23 EUROPEAN CONFERENCE ON FRACTURE, ECF23, 2022, 42 : 1721 - 1727
  • [26] A phase field model for cohesive fracture in micropolar continua
    Suh, Hyoung Suk
    Sun, WaiChing
    O'Connor, Devin T.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 369 (369)
  • [27] A phase-field model for fracture in piezoelectric ceramics
    Zachary A. Wilson
    Michael J. Borden
    Chad M. Landis
    International Journal of Fracture, 2013, 183 : 135 - 153
  • [28] Experimental validation of a phase-field model for fracture
    K. H. Pham
    K. Ravi-Chandar
    C. M. Landis
    International Journal of Fracture, 2017, 205 : 83 - 101
  • [29] Simulation of size effects by a phase field model for fracture
    Charlotte Kuhn
    Ralf Müller
    Theoretical & Applied Mechanics Letters, 2014, 4 (05) : 56 - 59
  • [30] A phase-field model for fracture in biological tissues
    Raina, Arun
    Miehe, Christian
    BIOMECHANICS AND MODELING IN MECHANOBIOLOGY, 2016, 15 (03) : 479 - 496