Planned radiative plasma terminations are examined as a method to recover tritium from plasma-deposited layers in the ITER tokamak. The technique exploits the high energy density of the ITER plasma, which is converted into a quasi-uniform radiation pulse by massive impurity injection that benignly terminates the plasma discharge. The radiation pulse transiently heats all plasma-viewing surfaces in order to desorb the tritium, which is released into the vessel and recovered by pumping. Calculations indicate significant tritium removal at reduced plasma current, similar to 6-10 MA, indicating the possibility of routine T recovery during the current rampdown phase of each discharge or during low current tritium recovery discharges. (c) 2004 Elsevier B.V. All rights reserved.