Quasi-Optimal Deceleration of Rotational Motion of a Dynamically Symmetric Rigid Body in a Resisting Medium

被引:1
|
作者
Zinkevich, Ya. S. [1 ]
机构
[1] Odessa State Acad Civil Engn & Architecture, Ul Didrikhsona 4, UA-65029 Odessa, Ukraine
基金
俄罗斯基础研究基金会;
关键词
quasi-optimal deceleration; dynamically symmetric body; rotation; resisting medium;
D O I
10.3103/S0025654416020035
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We study the problem of quasi-optimal (with respect to the response time) deceleration of rotational motion of a free rigid body which experiences a small retarding torque generated by a linearly resisting medium. We assume that the undeformed body is dynamically symmetric and its mass is concentrated on the symmetry axis. A system of nonlinear differential equations describing the evolution of rotation of the rigid body is obtained and studied.
引用
下载
收藏
页码:156 / 160
页数:5
相关论文
共 50 条
  • [41] Construction of optimal laws of variation in the angular momentum vector of a dynamically symmetric rigid body
    Zelepukina, O. V.
    Chelnokov, Yu N.
    MECHANICS OF SOLIDS, 2011, 46 (04) : 519 - 533
  • [42] Quasi-optimal control of rotation of a rigid body about a fixed axis taking friction into account
    L. D. Akulenko
    N. N. Bolotnik
    A. E. Borisov
    A. A. Gavrikov
    G. A. Emel’yanov
    Journal of Computer and Systems Sciences International, 2015, 54 : 331 - 348
  • [43] Modeling the Optimum Deceleration for the Motion of Asymmetric Rigid Body
    T. S. Amer
    I. M. Abady
    Hamed El-Sherbiny
    H. A. Abdo
    H. F. El-Kafly
    Journal of Vibration Engineering & Technologies, 2025, 13 (1)
  • [44] TO THE PROBLEM OF HEAVY RIGID BODY FALLING IN RESISTING MEDIUM
    KOZLOV, VV
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1990, (01): : 79 - 86
  • [45] A dynamically adaptive sparse grids method for quasi-optimal interpolation of multidimensional functions
    Stoyanov, Miroslav K.
    Webster, Clayton G.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (11) : 2449 - 2465
  • [46] ROTATIONAL EQUATIONS OF MOTION FOR A TRIAXIAL RIGID BODY
    COCHRAN, JE
    AIAA JOURNAL, 1971, 9 (06) : 1195 - &
  • [47] Hamel coefficients for the rotational motion of a rigid body
    Hurtado, JE
    JOURNAL OF THE ASTRONAUTICAL SCIENCES, 2004, 52 (1-2): : 129 - 147
  • [48] Hamel coefficients for the rotational motion of a rigid body
    Hurtado, JE
    JOHN L. JUNKINS ASTRODYNAMICS SYMPOSIUM, 2003, 115 : 427 - 443
  • [49] Hamel Coefficients for the Rotational Motion of a Rigid Body
    J. E. Hurtado
    The Journal of the Astronautical Sciences, 2004, 52 (1-2) : 129 - 147
  • [50] Hamel Coefficients for the Rotational Motion of a Rigid Body
    Hurtado, J.E.
    Journal of the Astronautical Sciences, 2004, 52 (1-2): : 129 - 147