Definability in First Order Theories of Graph Orderings

被引:4
|
作者
Ramanujam, R. [1 ]
Thinniyam, R. S. [1 ]
机构
[1] Inst Math Sci, Madras 600113, Tamil Nadu, India
关键词
Graphs; Partial order; Logical theory; Definability; SUBSTRUCTURE ORDERINGS; UNDECIDABILITY;
D O I
10.1007/978-3-319-27683-0_23
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study definability in the first order theory of graph order: that is, the set of all simple finite graphs ordered by either the minor, subgraph or induced subgraph relation. We show that natural graph families like cycles and trees are definable, as also notions like connectivity, maximum degree etc. This naturally comes with a price: bi-interpretability with arithmetic. We discuss implications for formalizing statements of graph theory in such theories of order.
引用
收藏
页码:331 / 348
页数:18
相关论文
共 50 条
  • [11] The Weak-Toll Function of a Graph: Axiomatic Characterizations and First-Order Non-definability
    Sheela, Lekshmi Kamal K.
    Changat, Manoj
    Jacob, Jeny
    ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2024, 2024, 14508 : 286 - 301
  • [12] Definability in substructure orderings, I: finite semilattices
    Jaroslav Ježek
    Ralph McKenzie
    Algebra universalis, 2009, 61
  • [13] Definability in substructure orderings, I: finite semilattices
    Jezek, Jaroslav
    McKenzie, Ralph
    ALGEBRA UNIVERSALIS, 2009, 61 (01) : 59 - 75
  • [14] Definability in substructure orderings, IV: Finite lattices
    J. Ježek
    R. McKenzie
    Algebra universalis, 2009, 61
  • [15] Definability in substructure orderings, IV: Finite lattices
    Jezek, J.
    McKenzie, R.
    ALGEBRA UNIVERSALIS, 2009, 61 (3-4) : 301 - 312
  • [16] DEFINABILITY IN NORMAL THEORIES
    BUCHI, JR
    DANHOF, KJ
    ISRAEL JOURNAL OF MATHEMATICS, 1973, 14 (03) : 248 - 256
  • [17] The complexity of definability by open first-order formulas
    Areces, Carlos
    Campercholi, Miguel
    Penazzi, Daniel
    Ventura, Pablo
    LOGIC JOURNAL OF THE IGPL, 2020, 28 (06) : 1093 - 1105
  • [18] Definability in substructure orderings, III: Finite distributive lattices
    Jaroslav Ježek
    Ralph McKenzie
    Algebra universalis, 2009, 61
  • [19] Definability in Substructure Orderings, II: Finite Ordered Sets
    Jezek, Jaroslav
    McKenzie, Ralph
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2010, 27 (02): : 115 - 145
  • [20] Definability in substructure orderings, III: Finite distributive lattices
    Jezek, Jaroslav
    McKenzie, Ralph
    ALGEBRA UNIVERSALIS, 2009, 61 (3-4) : 283 - 300