Lost electron energy distribution of electron cyclotron resonance ion sources

被引:2
|
作者
Izotov, I. [1 ,2 ]
Skalyga, V. [1 ,2 ]
Tarvainen, O. [3 ]
机构
[1] Russian Acad Sci, Fed Res Ctr, Inst Appl Phys, Nizhnii Novgorod 603950, Russia
[2] Lobachevsky State Univ Nizhny Novgorod, Nizhnii Novgorod 603950, Russia
[3] STFC, Rutherford Appleton Lab, ISIS Pulsed Spallat Neutron & Muon Facil, Harwell OX11 0QX, England
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2022年 / 93卷 / 04期
基金
俄罗斯科学基金会;
关键词
D O I
10.1063/5.0075464
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
To ensure further progress in the development of electron cyclotron resonance ion sources (ECRISs), deeper understanding of the underlying physics is required. The electron energy distribution (EED), which is crucial for the performance of an ECRIS, still remains obscure. The present paper focuses on the details of a well-developed technique of measuring the EED of electrons escaping axially from the magnetically confined plasma of an ECRIS. The method allows for better than 500 eV energy resolution over a range of electron energies from 4 keV to over 1 MeV. We present detailed explanation of the experimental procedure and the following data processing peculiarities with examples and discuss possible reasons of energetic electron losses from the magnetic trap, in particular the role of RF pitch angle scattering. Finally, an experimental method of approximating the confined EED based on the measurement of escaping electrons is described.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Optimization of Parameters of Hexapole Magnets for Electron Cyclotron Resonance Ion Sources
    Pugachev, D. K.
    Bogomolov, S. L.
    Bondarchenko, A. E.
    Berestov, K. I.
    Kuzmenkov, K. I.
    Efremov, A. A.
    Loginov, V. N.
    Mironov, V. E.
    Protasov, A. A.
    PHYSICS OF PARTICLES AND NUCLEI LETTERS, 2024, 21 (03) : 331 - 336
  • [42] A possible optimization of electron cyclotron resonance ion sources plasma chambers
    Gallo, C. S.
    Galata, A.
    Mascali, D.
    Torrisi, G.
    JOURNAL OF INSTRUMENTATION, 2018, 13
  • [43] IONIZATION AND CHARGE DISPERSION IN ELECTRON-CYCLOTRON RESONANCE ION SOURCES
    SHIRKOV, GD
    MUHLE, C
    MUSIOL, G
    ZSCHORNACK, G
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1991, 302 (01): : 1 - 5
  • [44] Successful modeling, design, and test of electron cyclotron resonance ion sources
    Heinen, A
    Ruther, M
    Ducree, J
    Leuker, J
    Mrogenda, J
    Ortjohann, HW
    Reckels, E
    Vitt, C
    Andra, HJ
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1998, 69 (02): : 729 - 731
  • [45] Perspectives of Electron Cyclotron Resonance Ion Sources Beyond the Scaling Laws
    Gammino, S.
    Celona, L.
    Mascali, D.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2016, 63 (02) : 1051 - 1059
  • [46] Self-consistent modeling of electron cyclotron resonance ion sources
    Girard, A
    Hitz, D
    Melin, G
    Serebrennikov, K
    Lécot, C
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (05): : 1463 - 1466
  • [47] Biased-electrode operation of electron cyclotron resonance ion sources
    Mironov, V
    Runkel, S
    Stiebing, KE
    Hohn, O
    Schmidt, L
    Schmidt-Böcking, H
    Schempp, A
    Shirkov, G
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2001, 72 (10): : 3826 - 3828
  • [48] Electron cyclotron resonance ion sources with arc-shaped Coils
    Suominen, P.
    Wenander, F.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2008, 79 (02):
  • [49] Recent performance of Japanese electron cyclotron resonance ion sources (invited)
    Nakagawa, T
    Yano, Y
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2000, 71 (02): : 637 - 642