Liner implosion experiments driven by a dynamic screw pinch

被引:10
|
作者
Campbell, Paul C. [1 ]
Jones, T. M. [1 ]
Woolstrum, J. M. [1 ]
Jordan, N. M. [1 ]
Schmit, P. F. [2 ]
Velikovich, A. L. [3 ]
Greenly, J. B. [4 ]
Potter, W. M. [4 ]
Lavine, E. S. [4 ]
Kusse, B. R. [4 ]
Hammer, D. A. [4 ]
McBride, R. D. [1 ]
机构
[1] Univ Michigan, Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA
[2] Sandia Natl Labs, Albuquerque, NM 87185 USA
[3] Naval Res Lab, Plasma Phys Div, Washington, DC 20375 USA
[4] Cornell Univ, Lab Plasma Studies, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
RAYLEIGH-TAYLOR INSTABILITY; STABILIZATION; CONDUCTIVITY; SIMULATIONS; EVOLUTION; PHYSICS;
D O I
10.1063/5.0044906
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This paper expands upon recent experimental results [Campbell et al., Phys. Rev. Lett. 125, 035001 (2020)], where thin-foil liner implosions were driven by a dynamic screw pinch (DSP) and found to have magneto-Rayleigh-Taylor instability (MRTI) amplitudes up to three times smaller than in implosions driven by a standard z-pinch (SZP). The expanded discussion presented herein includes: (1) a detailed comparison of the MRTI growth measured in the experiment with that calculated from theory; (2) measurements of axial magnetic field injection into the liner interior prior to the implosion, as well as the subsequent compression of this field during the implosion; (3) an in-depth description of how the helical geometry of the DSP can result in earlier implosion and stagnation times relative to the SZP; and (4) particle-in-cell simulations showing different electron drift behavior in the anode-cathode gap of the DSP relative to the SZP, and how this difference may be related to the different current waveforms recorded during the experiments.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] ROTATION IN IMPLOSION PHASE OF A THETA PINCH
    BENFORD, J
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1968, 13 (11): : 1550 - &
  • [42] Azimuthal structure and global instability in the implosion phase of wire array Z-pinch experiments
    Lebedev, SV
    Mitchell, IH
    Aliaga-Rossel, R
    Bland, SN
    Chittenden, JP
    Dangor, AE
    Haines, MG
    PHYSICAL REVIEW LETTERS, 1998, 81 (19) : 4152 - 4155
  • [43] Basic dynamic and scale study of quasi-spherical Z-pinch implosion
    Zhang Yang
    Sun Shun-Kai
    Ding Ning
    Li Zheng-Hong
    Shu Xiao-Jian
    ACTA PHYSICA SINICA, 2017, 66 (10)
  • [44] Characterization of a Liner-on-Target Gas Injector for Staged Z-Pinch Experiments
    Conti, F.
    Valenzuela, J. C.
    Aybar, N.
    Wessel, F. J.
    Ross, M. P.
    Narkis, J.
    Rahman, H. U.
    Ruskov, E.
    Beg, F. N.
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2018, 46 (11) : 3855 - 3863
  • [45] STABILITY OF SCREW PINCH
    SCHUURMAN, W
    BOBELDIJK, C
    DEVRIES, RF
    PLASMA PHYSICS, 1969, 11 (06): : 495 - +
  • [46] ROTATION DURING IMPLOSION OF A THETA-PINCH
    BENFORD, J
    PHYSICS OF FLUIDS, 1972, 15 (03) : 435 - &
  • [47] THE GYROELASTIC SCREW PINCH
    KERBEL, GD
    PHYSICS OF FLUIDS, 1982, 25 (02) : 306 - 315
  • [48] DYNAMICS OF SCREW PINCH
    GOEDBLOED, JP
    ZWART, JWA
    PLASMA PHYSICS AND CONTROLLED FUSION, 1975, 17 (01) : 45 - 67
  • [49] Neon photoionization experiments driven by Z-pinch radiation
    Bailey, JE
    Cohen, D
    Chandler, GA
    Cuneo, ME
    Foord, ME
    Heeter, RF
    Jobe, D
    Lake, P
    Liedahl, DA
    MacFarlane, JJ
    Nash, TJ
    Nielson, D
    Smelser, R
    Stygar, WA
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2001, 71 (2-6): : 157 - 168
  • [50] DELAYED IMPLOSION OF Z-PINCH IN NITROGEN
    CURZON, FL
    CHURCHILL, RJ
    HODGSON, RT
    CANADIAN JOURNAL OF PHYSICS, 1963, 41 (10) : 1547 - &