Enumeration of binary orthogonal arrays of strength 1

被引:6
|
作者
Zhang, JZ [1 ]
You, ZS
Li, ZL
机构
[1] Sichuan Univ, Coll Comp, Inst Image & Graph, Chengdu 610064, Sichuan, Peoples R China
[2] Univ Elect Sci & Technol China, Dept Appl Math, Chengdu 610051, Sichuan, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
binary orthogonal arrays; enumeration; inclusion-exclusion principle; edge-induced subgraph; connected component;
D O I
10.1016/S0012-365X(01)00045-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A k2(m) x n (0,1) matrix is called a binary orthogonal array of strength in if in any in columns of the matrix every one of the possible 2(m) ordered (0,1) m-tuples occurs in exactly k rows and no two rows are identical. In this paper, the enumeration of binary orthogonal arrays is studied, and a closed expression for the enumeration of binary orthogonal arrays of strength 1 is given using the inclusion-exclusion principle and the edge-induced subgraph. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:191 / 198
页数:8
相关论文
共 50 条
  • [1] A Parallelism Extended Approach for the Enumeration of Orthogonal Arrays
    Phan, Hien
    Soh, Ben
    Man Nguyen
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, PT I: ICA3PP 2011, 2011, 7916 : 481 - +
  • [2] ORTHOGONAL ARRAYS OF STRENGTH 5
    GULATI, BR
    LUCAS, JJ
    ANNALS OF MATHEMATICAL STATISTICS, 1968, 39 (05): : 1777 - &
  • [3] Orthogonal arrays of strength 3
    Kreher, DL
    JOURNAL OF COMBINATORIAL DESIGNS, 1996, 4 (01) : 67 - 69
  • [4] ON ORTHOGONAL ARRAYS OF STRENGTH 4
    SEIDEN, E
    ZEMACH, R
    ANNALS OF MATHEMATICAL STATISTICS, 1965, 36 (02): : 729 - &
  • [5] Complete enumeration of two-level orthogonal arrays of strength d with d+2 constraints
    Stufken, John
    Tang, Boxin
    ANNALS OF STATISTICS, 2007, 35 (02): : 793 - 814
  • [6] On the maximal number of factors and the enumeration of 3-symbol orthogonal arrays of strength 3 and index 2
    Hedayat, A
    Seiden, E
    Stufken, J
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1997, 58 (01) : 43 - 63
  • [7] Nonexistence of a few binary orthogonal arrays
    Boyvalenkov P.
    Marinova T.
    Stoyanova M.
    Discrete Applied Mathematics, 2017, 217 : 144 - 150
  • [8] Simplicity conditions for binary orthogonal arrays
    Claude Carlet
    Rebeka Kiss
    Gábor P. Nagy
    Designs, Codes and Cryptography, 2023, 91 : 151 - 163
  • [9] Simplicity conditions for binary orthogonal arrays
    Carlet, Claude
    Kiss, Rebeka
    Nagy, Gabor P.
    DESIGNS CODES AND CRYPTOGRAPHY, 2023, 91 (01) : 151 - 163
  • [10] Kronecker sum of binary orthogonal Arrays
    Sinha, K.
    Vellaisamy, P.
    Sinha, N.
    UTILITAS MATHEMATICA, 2008, 75 : 249 - 257