Nonexistence of a few binary orthogonal arrays

被引:0
|
作者
Boyvalenkov P. [1 ,2 ]
Marinova T. [3 ]
Stoyanova M. [3 ]
机构
[1] Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 8 G Bonchev Str., Sofia
[2] Faculty of Mathematics and Natural Sciences, South-Western University, Blagoevgrad
[3] Faculty of Mathematics and Informatics, Sofia University, 5 James Bourchier Blvd., Sofia
关键词
Binary Hamming space; Distance distributions; Krawtchouk polynomials; Nonexistence; Orthogonal arrays;
D O I
10.1016/j.dam.2016.07.023
中图分类号
学科分类号
摘要
We develop and apply combinatorial algorithms for investigation of the feasible distance distributions of binary orthogonal arrays with respect to a point of the ambient binary Hamming space utilizing constraints imposed from the relations between the distance distributions of connected arrays. This turns out to be strong enough and we prove the nonexistence of binary orthogonal arrays of parameters (length, cardinality, strength)=(9,96,4), (10,192,5), (10,112,4), (11,224,5), (11,112,4) and (12,224,5), resolving the first cases where the existence was undecided so far. For the existing arrays our approach allows substantial reduction of the number of feasible distance distributions which could be helpful for classification results (uniqueness, for example). © 2016 Elsevier B.V.
引用
收藏
页码:144 / 150
页数:6
相关论文
共 50 条
  • [1] Nonexistence of a few binary orthogonal arrays
    Boyvalenkov, Peter
    Marinova, Tanya
    Stoyanova, Maya
    [J]. DISCRETE APPLIED MATHEMATICS, 2017, 217 : 144 - 150
  • [2] Nonexistence of binary orthogonal arrays via their distance distributions
    Boyvalenkov, P.
    Kulina, H.
    Marinova, T.
    Stoyanova, M.
    [J]. PROBLEMS OF INFORMATION TRANSMISSION, 2015, 51 (04) : 326 - 334
  • [3] Nonexistence of binary orthogonal arrays via their distance distributions
    P. Boyvalenkov
    H. Kulina
    T. Marinova
    M. Stoyanova
    [J]. Problems of Information Transmission, 2015, 51 : 326 - 334
  • [4] NONEXISTENCE OF CERTAIN PERFECT BINARY ARRAYS AND NONEXISTENCE OF PERFECT BINARY ARRAYS
    YANG, YX
    [J]. ELECTRONICS LETTERS, 1993, 29 (11) : 1001 - 1002
  • [5] NONEXISTENCE OF CERTAIN PERFECT BINARY ARRAYS AND NONEXISTENCE OF PERFECT BINARY ARRAYS - REPLY
    JEDWAB, J
    DAVIS, JA
    [J]. ELECTRONICS LETTERS, 1993, 29 (11) : 1002 - 1002
  • [6] NONEXISTENCE OF PERFECT BINARY ARRAYS
    JEDWAB, J
    [J]. ELECTRONICS LETTERS, 1991, 27 (14) : 1252 - 1254
  • [7] NONEXISTENCE OF CERTAIN PERFECT BINARY ARRAYS
    JEDWAB, J
    DAVIS, JA
    [J]. ELECTRONICS LETTERS, 1993, 29 (01) : 99 - 101
  • [8] ON THE NONEXISTENCE OF CERTAIN ORTHOGONAL ARRAYS OF STRENGTH FOUR
    Kiss, R.
    Nagy, G. P.
    [J]. PRIKLADNAYA DISKRETNAYA MATEMATIKA, 2021, (52): : 65 - 68
  • [9] Simplicity conditions for binary orthogonal arrays
    Carlet, Claude
    Kiss, Rebeka
    Nagy, Gabor P.
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2023, 91 (01) : 151 - 163
  • [10] Simplicity conditions for binary orthogonal arrays
    Claude Carlet
    Rebeka Kiss
    Gábor P. Nagy
    [J]. Designs, Codes and Cryptography, 2023, 91 : 151 - 163