Nonexistence of a few binary orthogonal arrays

被引:0
|
作者
Boyvalenkov P. [1 ,2 ]
Marinova T. [3 ]
Stoyanova M. [3 ]
机构
[1] Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 8 G Bonchev Str., Sofia
[2] Faculty of Mathematics and Natural Sciences, South-Western University, Blagoevgrad
[3] Faculty of Mathematics and Informatics, Sofia University, 5 James Bourchier Blvd., Sofia
关键词
Binary Hamming space; Distance distributions; Krawtchouk polynomials; Nonexistence; Orthogonal arrays;
D O I
10.1016/j.dam.2016.07.023
中图分类号
学科分类号
摘要
We develop and apply combinatorial algorithms for investigation of the feasible distance distributions of binary orthogonal arrays with respect to a point of the ambient binary Hamming space utilizing constraints imposed from the relations between the distance distributions of connected arrays. This turns out to be strong enough and we prove the nonexistence of binary orthogonal arrays of parameters (length, cardinality, strength)=(9,96,4), (10,192,5), (10,112,4), (11,224,5), (11,112,4) and (12,224,5), resolving the first cases where the existence was undecided so far. For the existing arrays our approach allows substantial reduction of the number of feasible distance distributions which could be helpful for classification results (uniqueness, for example). © 2016 Elsevier B.V.
引用
收藏
页码:144 / 150
页数:6
相关论文
共 50 条
  • [21] NONEXISTENCE OF CERTAIN PERFECT ARRAYS
    CHAN, WK
    SIU, MK
    MA, SL
    [J]. DISCRETE MATHEMATICS, 1994, 125 (1-3) : 107 - 113
  • [22] Incomplete orthogonal arrays and idempotent orthogonal arrays
    Maurin, F
    [J]. GRAPHS AND COMBINATORICS, 1996, 12 (03) : 253 - 266
  • [23] TO ANALYZE BINARY DATA FROM MIXED-LEVEL ORTHOGONAL ARRAYS
    WANG, PC
    CHEN, MH
    WEI, SC
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1995, 20 (06) : 689 - 695
  • [24] The nonexistence of a binary homogeneous pseudoplane
    Thomas, S
    [J]. MATHEMATICAL LOGIC QUARTERLY, 1998, 44 (01) : 135 - 137
  • [25] Local equivalence of quantum orthogonal arrays and orthogonal arrays
    Du, Jiao
    Yin, Cuijiao
    Pang, Shanqi
    Wang, Tianyin
    [J]. QUANTUM INFORMATION PROCESSING, 2020, 19 (09)
  • [26] Local equivalence of quantum orthogonal arrays and orthogonal arrays
    Jiao Du
    Cuijiao Yin
    Shanqi Pang
    Tianyin Wang
    [J]. Quantum Information Processing, 2020, 19
  • [27] COLUMN-ORTHOGONAL STRONG ORTHOGONAL ARRAYS AND SLICED STRONG ORTHOGONAL ARRAYS
    Liu, Haiyan
    Liu, Min-Qian
    [J]. STATISTICA SINICA, 2015, 25 (04) : 1713 - 1734
  • [28] ON ORTHOGONAL ARRAYS
    SEIDEN, E
    ZEMACH, R
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1966, 37 (05): : 1355 - +
  • [29] ON THE NONEXISTENCE OF BARKER ARRAYS AND RELATED MATTERS
    ALQUADDOOMI, S
    SCHOLTZ, RA
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1989, 35 (05) : 1048 - 1057
  • [30] Miscellanea Nearly orthogonal arrays mappable into fully orthogonal arrays
    Mukerjee, Rahul
    Sun, Fasheng
    Tang, Boxin
    [J]. BIOMETRIKA, 2014, 101 (04) : 957 - 963