Ab initio study of the effects of Ag/Mn doping on the electronic structure of LiFePO4

被引:13
|
作者
Hou XianHua [1 ]
Hu SheJun [1 ,2 ]
Li WeiShan [3 ]
Zhao LingZhi [3 ]
Ru Qiang [1 ]
Yu HongWen [1 ]
Huang ZhaoWen [1 ]
机构
[1] S China Normal Univ, Sch Phys & Telecommun Engn, Guangzhou 510006, Peoples R China
[2] Wuyi Univ, Dept Math & Phys, Jiangmen 529020, Peoples R China
[3] S China Normal Univ, Sch Chem & Environm, Guangzhou 510006, Peoples R China
来源
CHINESE SCIENCE BULLETIN | 2008年 / 53卷 / 11期
基金
中国国家自然科学基金;
关键词
lithium ion battery; LiFePO4; first-principle; electronic structure; conductivity;
D O I
10.1007/s11434-008-0091-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Based on density functional theory (DFT) of the first-principle for the cathode materials of lithium ion battery, the electronic structures of Li(Fe1-xMex)PO4 (Me = Ag/Mn, x = 0-0.40) are calculated by plane wave pseudo-potential method using Cambridge serial total energy package (CASTEP) program. The calculated results show that the Fermi level of mixed atoms Fe1-xAgx moves into its conduction bands (CBs) due to the Ag doping. The Li(Fe1-xAgx)PO4 system displays the periodic direct semiconductor characteristic with the increase of Ag-doped concentration. However, for Fe1-xMnx mixed atoms, the Fermi level is pined at the bottom of conduction bands (CBs), which is ascribed to the interaction between Mn(3d) electrons and Fe(4s) electrons. The intensity of the partial density of states (PDOS) near the bottom of CBs becomes stronger with the increase of Mn-doped concentration. The Fermi energy of the Li(Fe1-xMnx)PO4 reaches maximum at x = 0.25, which is consistent with the experimental value of x = 0.20. The whole conduction property of Mn-doped LiFePO4 is superior to that of Ag-doped LiFePO4 cathode material, but the structural stability is reverse.
引用
收藏
页码:1763 / 1767
页数:5
相关论文
共 50 条
  • [31] Effects of magnesium doping on electronic conductivity and electrochemical properties of LiFePO4 prepared via hydrothermal route
    Ou, Xiuqin
    Liang, Guangchuan
    Wang, Li
    Xu, Shengzhao
    Zhao, Xia
    JOURNAL OF POWER SOURCES, 2008, 184 (02) : 543 - 547
  • [32] Ab initio study of the effects of Mg doping on electronic structure of Li(Co, Al)O2
    Xu, XG
    Wang, CZ
    Lu, W
    Meng, X
    Sun, Y
    Chen, G
    ACTA PHYSICA SINICA, 2005, 54 (01) : 313 - 316
  • [33] Ab Initio Study of Y Doping Effects on Electronic Structure and Magnetic Properties in Rh2Mn1-xYxZ (Z = Ge, Sn)
    Lekhal, A.
    Benkhelifa, F. Z.
    Zaoui, A.
    PHYSICS OF THE SOLID STATE, 2024, 66 (09) : 279 - 290
  • [34] Formation, doping, and lithium incorporation in LiFePO4
    Kuganathan, Navaratnarajah
    Chroneos, Alexander
    AIP ADVANCES, 2022, 12 (04)
  • [35] Proof of Supervalent Doping in Olivine LiFePO4
    Wagemaker, Marnix
    Ellis, Brian L.
    Luetzenkirchen-Hecht, Dirk
    Mulder, Fokko M.
    Nazar, Linda F.
    CHEMISTRY OF MATERIALS, 2008, 20 (20) : 6313 - 6315
  • [36] First-Principles Study of Electronic Structure of Nb-Doped LiFePO4
    Zhang Peixin
    Zhang Dongyun
    Huang Lei
    Hui Wenbin
    Wei Qun
    Song Shenhua
    RARE METAL MATERIALS AND ENGINEERING, 2013, 42 (04) : 718 - 723
  • [37] First-principles study of electronic structure of Nb-doped LiFePO4
    Zhang, D. (zdy_89@126.com), 2013, Science Press (42):
  • [38] Effect of Mn2+-doping in LiFePO4 and the low temperature electrochemical performances
    Li, Chengfeng
    Hua, Ning
    Wang, Chengyun
    Kang, Xueya
    Wumair, Tuerdi
    Han, Ying
    JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 (05) : 1897 - 1900
  • [39] LiFePO4/C via fluoride doping
    GU Yuan
    Rare Metals, 2012, 31 (06) : 573 - 577
  • [40] LiFePO4/C via fluoride doping
    Yuan Gu
    Xiangjun Zhang
    Shigang Lu
    Ting Zhao
    Danping Jiang
    Rong Yang
    Aide Wu
    Rare Metals, 2012, 31 : 573 - 577