Inequalities for Fractional Integrals of a Generalized Class of Strongly Convex Functions

被引:1
|
作者
Yan, Tao [1 ]
Farid, Ghulam [2 ]
Yasmeen, Hafsa [2 ]
Shim, Soo Hak [3 ]
Jung, Chahn Yong [4 ]
机构
[1] Chengdu Univ, Sch Comp Sci, Chengdu 610106, Peoples R China
[2] COMSATS Univ Islamabad, Dept Math, Attock Campus, Attock 43600, Pakistan
[3] Chonnam Natl Univ, Dept Refrigerat & Air Conditioning Engn, Yeosu 59626, South Korea
[4] Gyeongsang Natl Univ, Dept Business Adm, Jinju 52828, South Korea
关键词
Riemann-Liouville integrals; Hadamard inequality; strongly convex function; convex; function; HADAMARD TYPE INEQUALITIES; (ALPHA; (S; M)-CONVEX; OPERATORS;
D O I
10.3390/fractalfract6030168
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fractional integral operators are useful tools for generalizing classical integral inequalities. Convex functions play very important role in the theory of mathematical inequalities. This paper aims to investigate the Hadamard type inequalities for a generalized class of functions namely strongly (alpha, h - m) - p-convex functions by using Riemann-Liouville fractional integrals. The results established in this paper give refinements of various well-known inequalities which have been published in the recent past.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Extensions of Hermite-Hadamard inequalities for harmonically convex functions via generalized fractional integrals
    You, Xue-Xiao
    Ali, Muhammad Aamir
    Budak, Huseyin
    Agarwal, Praveen
    Chu, Yu-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
  • [22] On inequalities of Simpson type for co-ordinated convex functions via generalized fractional integrals
    Kara, Hasan
    Budak, Huseyin
    Ali, Muhammad Aamir
    FILOMAT, 2023, 37 (08) : 2605 - 2631
  • [23] New Integral Inequalities via the Katugampola Fractional Integrals for Functions Whose Second Derivatives Are Strongly η-Convex
    Kermausuor, Seth
    Nwaeze, Eze R.
    Tameru, Ana M.
    MATHEMATICS, 2019, 7 (02)
  • [24] Quasi-Convex Functions and Their Inequalities Based on Fractional Integrals
    Yin, Hongping
    Wang, Jingyu
    5TH ANNUAL INTERNATIONAL CONFERENCE ON INFORMATION SYSTEM AND ARTIFICIAL INTELLIGENCE (ISAI2020), 2020, 1575
  • [25] Generalized fractional inequalities for quasi-convex functions
    S. Ullah
    G. Farid
    K. A. Khan
    A. Waheed
    S. Mehmood
    Advances in Difference Equations, 2019
  • [26] Generalized fractional inequalities for quasi-convex functions
    Ullah, S.
    Farid, G.
    Khan, K. A.
    Waheed, A.
    Mehmood, S.
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
  • [27] Generalized proportional fractional integral inequalities for convex functions
    Neamah, Majid K.
    Ibrahim, Alawiah
    AIMS MATHEMATICS, 2021, 6 (10): : 10765 - 10777
  • [28] Hermite-Hadamard Type Inequalities for h-Convex Functions Via Generalized Fractional Integrals
    Ali, M. Aamir
    Budak, H.
    Abbas, M.
    Sarikaya, M. Z.
    Kashuri, A.
    JOURNAL OF MATHEMATICAL EXTENSION, 2020, 14 (04) : 187 - 234
  • [29] On Fejer type inequalities for convex mappings utilizing generalized fractional integrals
    Kashuri, A.
    Liko, R.
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2020, 15 (01): : 240 - 255
  • [30] NEW INEQUALITIES OF OSTROWSKI TYPE FOR CO-ORDINATED CONVEX FUNCTIONS VIA GENERALIZED FRACTIONAL INTEGRALS
    Ali, Muhammad Aamir
    Budak, Huseyin
    Zhang, Zhiyue
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2020, 35 (04): : 899 - 917