Estimating RNA Loop Entropies Using a New Nucleobase Model and Sequential Monte Carlo Method

被引:0
|
作者
Lin Hui [1 ]
Zhang Jian
机构
[1] Nanjing Univ, Sch Business, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
STRANDED CHAIN MOLECULES; THERMODYNAMIC PARAMETERS; SECONDARY STRUCTURE; PREDICTION; POLYMER;
D O I
10.1088/0256-307X/28/8/088702
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report a new scheme that is designed to accurately and efficiently compute the entropy of RNA loops. The scheme is based on a new RNA nucleobase discrete state (RNAnbds) model and a Sequential Monte Carlo (SMC) method. The novelty of the RNAnbds model is that it directly represents the conformation of the RNA nucleobases, instead of the RNA backbones. To test the performance of this new scheme, we calculate the entropies for RNA hairpin loops and compare the results with the exact computational values obtained by an enumeration strategy and with the experimental data. It is found that the SMC method gives almost indistinguishable results from enumerations for short loops. For long hairpin loops, it also provides a good estimation that agrees with experiments.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Model Discrimination in Copolymerization Using the Sequential Bayesian Monte Carlo Method
    Masoumi, Samira
    Duever, Thomas A.
    MACROMOLECULAR THEORY AND SIMULATIONS, 2016, 25 (05) : 435 - 448
  • [2] Improving a weed population model using a sequential Monte Carlo method
    Makowski, D.
    Chauvel, B.
    Munier-Jolain, N.
    WEED RESEARCH, 2010, 50 (04) : 373 - 382
  • [3] Protein Loop Modeling using Distance-Guided Sequential Monte Carlo Method
    Tang, Ke
    Zhang, Jinfeng
    Liang, Jie
    BIOPHYSICAL JOURNAL, 2011, 100 (03) : 215 - 215
  • [4] Efficient Protein Loop Generation using Distance-Guided Sequential Monte Carlo Method
    Tang, Ke
    Zhang, Jinfeng
    Liang, Jie
    BIOPHYSICAL JOURNAL, 2012, 102 (03) : 185A - 185A
  • [5] A New Monte Carlo Method for Estimating Marginal Likelihoods
    Wang, Yu-Bo
    Chen, Ming-Hui
    Kuo, Lynn
    Lewis, Paul O.
    BAYESIAN ANALYSIS, 2018, 13 (02): : 311 - 333
  • [6] ESTIMATING BOLTZMANN AVERAGES FOR PROTEIN STRUCTURAL QUANTITIES USING SEQUENTIAL MONTE CARLO
    Hou, Zhaoran
    Wong, Samuel W. K.
    STATISTICA SINICA, 2024, 34 : 1263 - 1280
  • [7] A Semiautomatic Method for History Matching Using Sequential Monte Carlo
    Drovandi, Christopher
    Nott, David J.
    Pagendam, Daniel E.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2021, 9 (03): : 1034 - 1063
  • [8] Monte Carlo Method for Estimating Eigenvalues Using Error Balancing
    Gurova, Silvi-Maria
    Karaivanova, Aneta
    LARGE-SCALE SCIENTIFIC COMPUTING (LSSC 2021), 2022, 13127 : 447 - 455
  • [9] Sequential Monte Carlo with model tempering
    Mlikota, Marko
    Schorfheide, Frank
    STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2024, 28 (02): : 249 - 269
  • [10] Sequential noise compensation by sequential Monte Carlo method
    Yao, K
    Nakamura, S
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 14, VOLS 1 AND 2, 2002, 14 : 1213 - 1220