Numerical Solution to the 3D Static Maxwell Equations in Axisymmetric Singular Domains with Arbitrary Data

被引:1
|
作者
Assous, Franck [1 ]
Raichik, Irina [2 ]
机构
[1] Ariel Univ, IL-40700 Ariel, Israel
[2] Bar Ilan Univ, IL-52900 Ramat Gan, Israel
关键词
Maxwell Equations; Fourier Analysis; Singularities; Axisymmetric Geometry; Finite Element; FINITE-ELEMENT-METHOD; COMPLEMENT METHOD; POISSON PROBLEM;
D O I
10.1515/cmam-2018-0314
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a numerical method to solve the three-dimensional static Maxwell equations in a singular axisymmetric domain, generated by the rotation of a singular polygon around one of its sides. The mathematical tools and an in-depth study of the problem set in the meridian half-plane are exposed in [F. Assous, P. Ciarlet, Jr., S. Labrunie and J. Segre, Numerical solution to the time-dependent Maxwell equations in axisymmetric singular domains: the singular complement method, J. Comput. Phys. 191 (2003), no. 1, 147-176] and [P. Ciarlet, Jr. and S. Labrunie, Numerical solution of Maxwell's equations in axisymmetric domains with the Fourier singular complement method, Differ. Equ. Appl. 3 (2011), no. 1, 113 155]. Here, we derive a variational formulation and the corresponding approximation method. Numerical experiments are proposed, and show that the approach is able to capture the singular part of the solution. This article can also be viewed as a generalization of the Singular Complement Method to three-dimensional axisymmetric problems.
引用
下载
收藏
页码:419 / 435
页数:17
相关论文
共 50 条
  • [31] Numerical approximation of axisymmetric positive solutions of semilinear elliptic equations in axisymmetric domains of R-3
    Achtaich, N
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1997, 31 (05): : 599 - 614
  • [32] TOWARD THE FINITE-TIME BLOWUP OF THE 3D AXISYMMETRIC EULER EQUATIONS: A NUMERICAL INVESTIGATION
    Luo, Guo
    Hou, Thomas Y.
    MULTISCALE MODELING & SIMULATION, 2014, 12 (04): : 1722 - 1776
  • [33] Numerical methods for axisymmetric and 3D nonlinear beams
    Pinton, GF
    Trahey, GE
    Medical Imaging 2005: Ultrasonic Imaging and Signal Processing, 2005, 5750 : 388 - 396
  • [34] Numerical methods for axisymmetric and 3D nonlinear beams
    Pinton, GE
    Trahey, GE
    2005 IEEE Ultrasonics Symposium, Vols 1-4, 2005, : 1291 - 1294
  • [35] Joly-Mercier boundary condition for the finite element solution of 3D Maxwell equations
    Assous, Franck
    Sonnendruecker, Eric
    MATHEMATICAL AND COMPUTER MODELLING, 2010, 51 (7-8) : 935 - 943
  • [36] A singular field method for Maxwell's equations: Numerical aspects for 2D magnetostatics
    Hazard, C
    Lohrengel, S
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (03) : 1021 - 1040
  • [37] Numerical solution of singular integral equations of the body force method in notch problems (3rd Report, application to 3D problems)
    Noda, Nao-Aki
    Matsuo, Tadatoshi
    Nippon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1993, 59 (564): : 1964 - 1970
  • [38] Global well-posedness of axisymmetric solution to the 3D axisymmetric chemotaxis-Navier-Stokes equations with logistic source
    Zhang, Qian
    Zheng, Xiaoxin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 274 : 576 - 612
  • [39] Local knot method for 2D and 3D convection-diffusion-reaction equations in arbitrary domains
    Wang, Fajie
    Wang, Chao
    Chen, Zengtao
    APPLIED MATHEMATICS LETTERS, 2020, 105
  • [40] Global weighted regularity for the 3D axisymmetric MHD equations
    Guo, Zhengguang
    Wang, Yufei
    Li, Yeping
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (04):