Cross lingual transfer learning for sentiment analysis of Italian TripAdvisor reviews

被引:7
|
作者
Catelli, Rosario [1 ]
Bevilacqua, Luca [5 ]
Mariniello, Nicola [5 ]
di Carlo, Vladimiro Scotto [5 ]
Magaldi, Massimo [5 ]
Fujita, Hamido [2 ,3 ,4 ]
De Pietro, Giuseppe [1 ]
Esposito, Massimo [1 ]
机构
[1] Natl Res Council CNR, Inst High Performance Comp & Networking ICAR, Naples, Italy
[2] Ho Chi Minh City Univ Technol HUTECH, Fac Informat Technol, Ho Chi Minh City, Vietnam
[3] Natl Taipei Univ Technol, Taipei, Taiwan
[4] I Somet Inc Assoc, Morioka, Iwate, Japan
[5] Engn Ingn Informat SpA, Naples, Italy
关键词
Transfer learning; Sentiment analysis; Italian dataset; BERT; TripAdvisor; Reviews;
D O I
10.1016/j.eswa.2022.118246
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Over the years, the attention of the scientific world towards the techniques of sentiment analysis has increased considerably, driven by industry. The arrival of the Google BERT language model has confirmed the superiority of models based on a particular structure of artificial neural network called Transformer, from which many variants have resulted. These models are generally pre-trained on large text corpora and only later specialized according to the precise task to be faced on much smaller amounts of data. For these reasons, countless versions were developed to meet the specific needs of each language, especially in the case of languages with relatively few datasets available. At the same time, models that were pre-trained for multiple languages became widespread, providing greater flexibility of use in exchange for lower performance. This study shows how the use of techniques to transfer learning from languages with high resources to languages with low resources provides an important performance increase: a multilingual BERT model fine tuned on a mixed English/Italian dataset (using for the English a literature dataset and for the Italian a reviews dataset created ad-hoc from the well-known platform TripAdvisor), provides much higher performance than models specific to Italian. Overall, the results obtained by comparing the different possible approaches indicate which one is the most promising to pursue in order to obtain the best results in low resource scenarios.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Sentiment analysis in Bengali via transfer learning using multi-lingual BERT
    Islam, Khondoker Ittehadul
    Islam, Md Saiful
    Amin, Md Ruhul
    2020 23RD INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY (ICCIT 2020), 2020,
  • [22] A comparative study of cross-lingual sentiment analysis
    Priban, Pavel
    Smid, Jakub
    Steinberger, Josef
    Mistera, Adam
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 247
  • [23] Cross-Lingual Propagation for Deep Sentiment Analysis
    Dong, Xin
    de Melo, Gerard
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 5771 - 5778
  • [24] Visitors' Sentiment in Archeological Heritage Sites: A Study Based on TripAdvisor Reviews
    Islam, Md Nurnobi
    INTERNATIONAL JOURNAL OF HOSPITALITY & TOURISM ADMINISTRATION, 2025, 26 (01) : 90 - 111
  • [25] Linear Transformations for Cross-lingual Sentiment Analysis
    Priban, Pavel
    Smid, Jakub
    Mistera, Adam
    Kral, Pavel
    TEXT, SPEECH, AND DIALOGUE (TSD 2022), 2022, 13502 : 125 - 137
  • [26] Learning Sentiment Analysis for Accessibility User Reviews
    Aljedaani, Wajdi
    Rustam, Furqan
    Ludi, Stephanie
    Ouni, Ali
    Mkaouer, Mohamed Wiem
    2021 36TH IEEE/ACM INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING WORKSHOPS (ASEW 2021), 2021, : 239 - 246
  • [27] Improving Transfer Learning in Cross Lingual Opinion Analysis Through Negative Transfer Detection
    Gui, Lin
    Lu, Qin
    Xu, Ruifeng
    Wei, Qikang
    Cao, Yuhui
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, KSEM 2015, 2015, 9403 : 394 - 406
  • [28] Sentiment Analysis of Yelp Reviews by Machine Learning
    Hemalatha, S.
    Ramathmika
    PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICCS), 2019, : 700 - 704
  • [29] Cross-Lingual Sentiment Classification with Bilingual Document Representation Learning
    Zhou, Xinjie
    Wan, Xianjun
    Xiao, Jianguo
    PROCEEDINGS OF THE 54TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, 2016, : 1403 - 1412
  • [30] Cross-Lingual Sentiment Analysis for Indian Regional Languages
    Impana, P.
    Kallimani, Jagadish S.
    2017 INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, COMMUNICATION, COMPUTER, AND OPTIMIZATION TECHNIQUES (ICEECCOT), 2017, : 867 - 872