Asymptotic analysis for close evaluation of layer potentials

被引:18
|
作者
Carvalho, Camille [1 ]
Khatri, Shilpa [1 ]
Kim, Arnold D. [1 ]
机构
[1] Univ Calif Merced, Appl Math Unit, Sch Nat Sci, 5200 North Lake Rd, Merced, CA 95343 USA
基金
美国国家科学基金会;
关键词
Boundary integral equations; Laplace's equation; Layer potentials; Nearly singular integrals; Close evaluations; SURFACE-PLASMON RESONANCE; FUNCTION EXPANSIONS; SINGULAR-INTEGRALS; BOUNDARY; LAPLACE;
D O I
10.1016/j.jcp.2017.11.015
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We study the evaluation of layer potentials close to the domain boundary. Accurate evaluation of layer potentials near boundaries is needed in many applications, including fluid-structure interactions and near-field scattering in nano-optics. When numerically evaluating layer potentials, it is natural to use the same quadrature rule as the one used in the Nystrom method to solve the underlying boundary integral equation. However, this method is problematic for evaluation points close to boundaries. For a fixed number of quadrature points, N, this method incurs O(1) errors in a boundary layer of thickness O(1/N). Using an asymptotic expansion for the kernel of the layer potential, we remove this O(1) error. We demonstrate the effectiveness of this method for interior and exterior problems for Laplace's equation in two dimensions. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:327 / 341
页数:15
相关论文
共 50 条
  • [41] An asymptotic analysis of a simple model for the structure and dynamics of the Ramdas layer
    Murthy, ASV
    Narasimha, R
    Varghese, S
    PURE AND APPLIED GEOPHYSICS, 2005, 162 (10) : 1831 - 1857
  • [42] ASYMPTOTIC ANALYSIS OF TURBULENT CHANNEL AND BOUNDARY-LAYER FLOW
    BUSH, WB
    FENDELL, FE
    JOURNAL OF FLUID MECHANICS, 1972, 56 (DEC28) : 657 - 681
  • [43] A 3-LAYER ASYMPTOTIC ANALYSIS OF TURBULENT CHANNEL FLOW
    AFZAL, N
    BUSH, WB
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1985, 94 (2-3): : 135 - 148
  • [44] Asymptotic expansions close to the singularity in Gowdy spacetimes
    Ringström, H
    CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (03) : S305 - S322
  • [45] RADIAL ASYMPTOTIC EXPANSIONS FOR SINGULAR POTENTIALS
    OBRIEN, TJP
    JOURNAL OF CHEMICAL PHYSICS, 1973, 58 (10): : 4676 - 4678
  • [46] Asymptotic iteration method for singular potentials
    Champion, Brodie
    Hall, Richard L.
    Saad, Nasser
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2008, 23 (09): : 1405 - 1415
  • [47] CLOSE LAYER MULTISECTION TOMOGRAPHY
    COUCH, RSC
    BRODIE, V
    BRITISH JOURNAL OF RADIOLOGY, 1966, 39 (461): : 358 - &
  • [48] Steady state analysis by asymptotic periodic waveform evaluation
    Uatrongjit, S
    Vilasdeshanon, J
    Likit-Anurucks, K
    APCCAS '98 - IEEE ASIA-PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS: MICROELECTRONICS AND INTEGRATING SYSTEMS, 1998, : 359 - 362
  • [49] ASYMPTOTIC WAVE-FORM EVALUATION FOR TIMING ANALYSIS
    PILLAGE, LT
    ROHRER, RA
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 1990, 9 (04) : 352 - 366
  • [50] Asymptotic analysis of boundary layer of a thermo-dependent fluid flow
    Amtout, Tarik
    Cheikhi, Adil
    Er-Riani, Mustapha
    Lahrouz, Aadil
    El Jarroudi, Mustapha
    Settati, Adil
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2023, 148