Acid-Scavenging Separators: A Novel Route for Improving Li-Ion Batteries' Durability

被引:57
|
作者
Banerjee, Anjan [1 ,2 ]
Ziv, Baruch [1 ,2 ]
Shilina, Yuliya [1 ,2 ]
Luski, Shalom [1 ,2 ]
Aurbach, Doron [1 ,2 ]
Halalay, Ion C. [3 ]
机构
[1] Bar Ilan Univ, Dept Chem, IL-590002 Ramat Gan, Israel
[2] Bar Ilan Univ, BINA BIU Inst Nanotechnol & Adv Mat, IL-590002 Ramat Gan, Israel
[3] Gen Motors R&D Ctr, Warren, MI 48090 USA
来源
ACS ENERGY LETTERS | 2017年 / 2卷 / 10期
关键词
TEMPERATURE PERFORMANCE; LINI0.5MN1.5O4; CATHODES; CAPACITY LOSSES; GRAPHITE ANODE; MANGANESE; ELECTROLYTE; CELLS; LIMN2O4; OPTIMIZATION; DISSOLUTION;
D O I
10.1021/acsenergylett.7b00763
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Autocatalytic decomposition of LiPF6, with generation of HF and Lewis acids is the root cause for Li-ion battery (LIB) performance degradation. Acidic species promote various parasitic reactions, among which transition metal ions dissolution and the loss of electroactive as well as transport Li+ have the most detrimental consequences for LIB performance. Herein we report on the performance improvements enabled by an acid-scavenging separator in cells with graphite negative and LiMn2O4 or LiNi0.6Mn0.2Co0.2O2 positive electrodes. After 4 weeks of cycling at 55 degrees C, LiMn2O4 parallel to graphite and LiNi0.6Mn0.2Co0.2O2 parallel to graphite cells with functional separators retain 100 and 43% more capacity, respectively, than cells with plain polypropylene separators. Furthermore, cells with functionalized separators have half of the interfacial impedances of cells with baseline separators, irrespective of positive electrode. The benefits afforded by acid-scavenging separators thus extend to broader classes of cell chemistries, beyond those affected mainly by manganese dissolution and loss of electroactive Li+ ions.
引用
收藏
页码:2388 / 2393
页数:6
相关论文
共 50 条
  • [41] The Age of Li-Ion Batteries
    Stephan, Alexandra K.
    JOULE, 2019, 3 (11) : 2583 - 2584
  • [42] Safer Li-ion batteries
    O'Driscoll, Cath
    CHEMISTRY & INDUSTRY, 2018, 82 (07) : 8 - 8
  • [43] Thermomanagement of Li-ion batteries
    Wiebelt, Achim
    Isermeyer, Tobias
    Siebrecht, Thomas
    Heckenberger, Thomas
    ATZ worldwide, 2009, 111 (7-8) : 12 - 15
  • [44] A novel hydrothermal route of preparing CuMnO2 nanoflakes and their application in Li-ion batteries and supercapacitors
    Cheng, Cuixia
    APL MATERIALS, 2023, 11 (07)
  • [45] Increasing the durability of Li-ion batteries by means of manganese ion trapping materials with nitrogen functionalities
    Banerjee, Anjan
    Ziv, Baruch
    Luski, Shalom
    Aurbach, Doron
    Halalay, Ion C.
    JOURNAL OF POWER SOURCES, 2017, 341 : 457 - 465
  • [46] Improving Precision and Accuracy in Coulombic Efficiency Measurements of Li-Ion Batteries
    Bond, T. M.
    Burns, J. C.
    Stevens, D. A.
    Dahn, H. M.
    Dahn, J. R.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (03) : A521 - A527
  • [47] Effects of cell positive cans and separators on the performance of high-voltage Li-ion batteries
    Chen, Xilin
    Xu, Wu
    Xiao, Jie
    Engelhard, Mark H.
    Ding, Fei
    Mei, Donghai
    Hu, Dehong
    Zhang, Jian
    Zhang, Ji-Guang
    JOURNAL OF POWER SOURCES, 2012, 213 : 160 - 168
  • [48] Safe Li-ion batteries enabled by completely inorganic electrode-coated silicalite separators
    Rafiz, Kishen
    Lin, Jerry Y. S.
    SUSTAINABLE ENERGY & FUELS, 2020, 4 (11): : 5783 - 5794
  • [49] Novel polymer Li-ion binder carboxymethyl cellulose derivative enhanced electrochemical performance for Li-ion batteries
    Qiu, Lei
    Shao, Ziqiang
    Wang, Daxiong
    Wang, Feijun
    Wang, Wenjun
    Wang, Jianquan
    CARBOHYDRATE POLYMERS, 2014, 112 : 532 - 538
  • [50] Poly(ether ether ketone)-Induced Surface Modification of Polyethylene Separators for Li-Ion Batteries
    Kim, Yunjung
    Jang, Yong-Jin
    Seo, Hyungeun
    Lee, Je-Nam
    Woo, Sang-Gil
    Kim, Jae-Hun
    ENERGIES, 2023, 16 (02)