Learning Deep Local Features with Multiple Dynamic Attentions for Large-Scale Image Retrieval

被引:12
|
作者
Wu, Hui [1 ]
Wang, Min [2 ]
Zhou, Wengang [1 ,2 ]
Li, Houqiang [1 ,2 ]
机构
[1] Univ Sci & Technol China, EEIS Dept, CAS Key Lab Technol GIPAS, Hefei, Peoples R China
[2] Hefei Comprehens Natl Sci Ctr, Inst Artificial Intelligence, Hefei, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
D O I
10.1109/ICCV48922.2021.01122
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In image retrieval, learning local features with deep convolutional networks has been demonstrated effective to improve the performance. To discriminate deep local features, some research efforts turn to attention learning. However, existing attention-based methods only generate a single attention map for each image, which limits the exploration of diverse visual patterns. To this end, we propose a novel deep local feature learning architecture to simultaneously focus on multiple discriminative local patterns in an image. In our framework, we first adaptively reorganize the channels of activation maps for multiple heads. For each head, a new dynamic attention module is designed to learn the potential attentions. The whole architecture is trained as metric learning of weighted-sum-pooled global image features, with only image-level relevance label. After the architecture training, for each database image, we select local features based on their multi-head dynamic attentions, which are further indexed for efficient retrieval. Extensive experiments show the proposed method outperforms the state-ofthe-art methods on the Revisited Oxford and Paris datasets. Besides, it typically achieves competitive results even using local features with lower dimensions. Code will be released at https://github.com/CHANWH/MDA.
引用
收藏
页码:11396 / 11405
页数:10
相关论文
共 50 条
  • [41] Deep Neighborhood Structure-Preserving Hashing for Large-Scale Image Retrieval
    Qin, Qibing
    Xie, Kezhen
    Zhang, Wenfeng
    Wang, Chengduan
    Huang, Lei
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 1881 - 1893
  • [42] Deep Adaptive Quadruplet Hashing With Probability Sampling for Large-Scale Image Retrieval
    Qin, Qibing
    Huang, Lei
    Xie, Kezhen
    Wei, Zhiqiang
    Wang, Chengduan
    Zhang, Wenfeng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (12) : 7914 - 7927
  • [43] Discriminative dual-stream deep hashing for large-scale image retrieval
    Ding, Yujuan
    Wong, Wai Keung
    Lai, Zhihui
    Zhang, Zheng
    INFORMATION PROCESSING & MANAGEMENT, 2020, 57 (06)
  • [44] Deep Supervised Hashing for Multi-Label and Large-Scale Image Retrieval
    Wu, Dayan
    Lin, Zheng
    Li, Bo
    Ye, Mingzhen
    Wang, Weiping
    PROCEEDINGS OF THE 2017 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL (ICMR'17), 2017, : 155 - 163
  • [45] Similarity caching in large-scale image retrieval
    Falchi, Fabrizio
    Lucchese, Claudio
    Orlando, Salvatore
    Perego, Raffaele
    Rabitti, Fausto
    INFORMATION PROCESSING & MANAGEMENT, 2012, 48 (05) : 803 - 818
  • [46] Region Division for Large-scale Image Retrieval
    Rao, Yunbo
    Liu, Wei
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2019, 13 (10) : 5197 - 5218
  • [47] Manhattan Hashing for Large-Scale Image Retrieval
    Kong, Weihao
    Li, Wu-Jun
    Guo, Minyi
    SIGIR 2012: PROCEEDINGS OF THE 35TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2012, : 45 - 54
  • [48] Weak Attributes for Large-Scale Image Retrieval
    Yu, Felix X.
    Ji, Rongrong
    Tsai, Ming-Hen
    Ye, Guangnan
    Chang, Shih-Fu
    2012 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2012, : 2949 - 2956
  • [49] Multiple Riemannian Kernel Hashing for Large-Scale Image Set Classification and Retrieval
    Shen, Xiaobo
    Wu, Wei
    Wang, Xiaxin
    Zheng, Yuhui
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 4261 - 4273
  • [50] Jointly sparse fast hashing with orthogonal learning for large-scale image retrieval
    Xu, Honghao
    Lai, Zhihui
    Kong, Heng
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2023, 119