An End-to-End Tool Flow for FPGA-Accelerated Scientific Computing

被引:2
|
作者
Stitt, Greg [1 ]
George, Alan
Lam, Herman
Smith, Melissa [2 ]
Aggarwal, Vikas [1 ]
Wang, Gongyu [1 ]
Coole, James [1 ]
Reardon, Casey [3 ]
Holland, Brian
Koehler, Seth [4 ]
机构
[1] Univ Florida, Dept Elect & Comp Engn, NSF CHREC, Gainesville, FL 32611 USA
[2] Clemson Univ, Clemson, SC 29631 USA
[3] Mitre Corp, Bedford, MA USA
[4] Altera Corp, San Jose, CA USA
来源
IEEE DESIGN & TEST OF COMPUTERS | 2011年 / 28卷 / 04期
基金
美国国家科学基金会;
关键词
design and test; design automation; design-space exploration; FPGAs; productivity; reconfigurable computing; tool flow;
D O I
10.1109/MDT.2011.46
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
A study that involved extending and combining existing FPGA tools to create a tool flow that addresses these bottlenecks is presented. The key contributions of the tool flow include formulation techniques for rapid design-space exploration, a coordination framework for communication and synchronization between tasks in different languages and devices, intermediate fabrics for fast placement and routing (PAR), and tools for performance analysis and bottleneck detection. To reduce design iterations, the tool flow enables early design-space exploration, which we refer to as formulation. Comparing RAT performance predictions with actual performance for the TDFIR application when using different signal sizes ranging from 400 Mbytes down to 50 Mbytes shows only 3% predicted errors. Intermediate fabrics (IF) architectures can potentially implement any fabric, but the tools currently support island-style fabrics with application-specialized computational units (CU) spread across reconfigurable interconnects.
引用
收藏
页码:68 / 77
页数:10
相关论文
共 50 条
  • [21] Memory optimization in FPGA-accelerated scientific codes based on unstructured meshes
    Barrio, Pablo
    Carreras, Carlos
    Lopez, Juan A.
    Robles, Oscar
    Jevtic, Ruzica
    Sierra, Roberto
    JOURNAL OF SYSTEMS ARCHITECTURE, 2014, 60 (07) : 579 - 591
  • [22] End-to-End Network Performance Monitoring for Dispersed Computing
    Quynh Nguyen
    Ghosh, Pradipta
    Krishnamachari, Bhaskar
    2018 INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKING AND COMMUNICATIONS (ICNC), 2018, : 707 - 711
  • [23] End-to-end network slicing for edge computing optimization
    Baktir, Ahmet Cihat
    Ozgovde, Atay
    Ersoy, Cem
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 157 : 516 - 528
  • [24] An End-to-End Computing Model for the Square Kilometre Array
    Jongerius, Rik
    Wijnholds, Stefan
    Nijboer, Ronald
    Corporaal, Henk
    COMPUTER, 2014, 47 (09) : 48 - 54
  • [25] The role of end-to-end quality of service in distributed computing
    Steenkiste, P
    Kandlur, D
    Parulkar, G
    Polze, A
    Zinky, J
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS, 1997, : 205 - 206
  • [26] Computing end-to-end delays in stream query processing
    Kakkad, Vasvi
    Santosa, Andrew E.
    Fekete, Alan
    Scholz, Bernhard
    SCIENCE OF COMPUTER PROGRAMMING, 2015, 105 : 124 - 144
  • [27] End-to-end simulation environment for mobile edge computing
    Gilly, Katja
    Bernad, Cristina
    Roig, Pedro J.
    Alcaraz, Salvador
    Filiposka, Sonja
    SIMULATION MODELLING PRACTICE AND THEORY, 2022, 121
  • [28] End-to-End Scientific Data Management using Workflows
    Simmhan, Yogesh
    IEEE CONGRESS ON SERVICES 2008, PT I, PROCEEDINGS, 2008, : 472 - 473
  • [29] Development of a end-to-end Cloud Computing MetOcean solution
    McKenna, Brian
    Knee, Kelly
    Howlett, Eoin
    OCEANS 2016 MTS/IEEE MONTEREY, 2016,
  • [30] FlexCNN: An End-to-end Framework for Composing CNN Accelerators on FPGA
    Basalama, Suhail
    Sohrabizadeh, Atefeh
    Wang, Jie
    Guo, Licheng
    Cong, Jason
    ACM TRANSACTIONS ON RECONFIGURABLE TECHNOLOGY AND SYSTEMS, 2023, 16 (02)