Temperature characteristic determination of silicon photodiodes used in radiation pyrometry application

被引:0
|
作者
Kapidzic, A [1 ]
Zekovic, L [1 ]
机构
[1] Univ Belgrade, Fac Phys, YU-11001 Belgrade, Yugoslavia
关键词
D O I
暂无
中图分类号
O59 [应用物理学];
学科分类号
摘要
Optical (radiation) pyrometry-thermometry is metrology of high temperatures (over 964.78degreesC) in which both visual and near infrared spectral components dominate in radiation spectra. It is a non-contact technique of temperature measurement based on Planck's radiation law, i.e. correlation between intensity of electromagnetic radiation and temperature. Photoelectrical pyrometers with linear current characteristic in optical pyrometry are often used for reliable temperature measurements in rough industrial conductions[l]. They utilize semiconductor silicon diodes for photoelectrical detection. High linearity, sensitivity and relatively good temperature stability of these pyrometers depend on their silicon photodiode characteristics. Temperatuare variations affect temperature characteristics and dark current of diodes. This phenomena can be explained by changes in photodetector current ID which depends on temperature and wavelength[2]. Increased temperature greatly affects coefficient of output current ID variation with temperature (Klambda) for wide range of wavelengths lambda epsilon(400-1100) nm. We performed measurements on two different photodiode types: Simens BPW21 with lambda=600nm of peak sensitivity and FDO8N with lambda=900nm of peak sensitivity (producer Institut IHTM, Belgrade). These two photodiode types are commonly used for high temperature measurements in linear photoelectric optical pyrometers[3]. We propose method for characterization of Klambda and K-uk, for both types of photodiodes, and we give comparison of experimentally and theoretically obtained values for two types of wide zone optical pyrometers: lambda epsilon(400-1100) nm and lambda epsilon(700-1100) nm.
引用
收藏
页码:147 / 150
页数:4
相关论文
共 50 条
  • [21] Silicon photodiodes with high photoconductive gain at room temperature
    Li, X.
    Carey, J. E.
    Sickler, J. W.
    Pralle, M. U.
    Palsule, C.
    Vineis, C. J.
    OPTICS EXPRESS, 2012, 20 (05): : 5518 - 5523
  • [22] Temperature measurements using multicolor pyrometry in thermal radiation heating environments
    Fu, Tairan
    Liu, Jiangfan
    Duan, Minghao
    Zong, Anzhou
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (04):
  • [23] Pyroelectric Radiation Detectors for Use in Low-temperature Pyrometry.
    Hofmann, G.
    Feingeratetechnik Berlin, 1981, 30 (01): : 25 - 27
  • [24] Irradiation stability of silicon photodiodes for extreme-ultraviolet radiation
    Scholze, F
    Klein, R
    Bock, T
    APPLIED OPTICS, 2003, 42 (28) : 5621 - 5626
  • [25] New silicon photodiodes for detection of the 1064 nm wavelength radiation
    Wegrzecki, Maciej
    Piotrowski, Tadeusz
    Puzewicz, Zbigniew
    Bar, Jan
    Czarnota, Ryszard
    Dobrowolskia, Rafal
    Klimov, Andrii
    Kulawik, Jan
    Klos, Helena
    Marchewka, Michal
    Nieprzecki, Marek
    Panas, Andrzej
    Seredynski, Bartlomiej
    Sierakowski, Andrzej
    Slysz, Wojciech
    Synkiewicz, Beata
    Szmigiel, Dariusz
    Zaborowski, Michal
    ELECTRON TECHNOLOGY CONFERENCE 2016, 2016, 10175
  • [26] ON THE STABILITY OF LOW-LEAKAGE SILICON PHOTODIODES USED WITH CRYSTAL CALORIMETERS
    BEAN, A
    BIAN, Z
    DOBBINS, J
    JIM, K
    KANDASWAMY, J
    MISTRY, N
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1986, 33 (01) : 411 - 414
  • [27] Temperature measurement with photodiodes: Application to laser diode temperature monitoring
    Foldesy, Peter
    Janoki, Imre
    Nagy, Adam
    Siket, Mate
    Zarandy, Akos
    SENSORS AND ACTUATORS A-PHYSICAL, 2022, 337
  • [28] Temperature measurement with photodiodes: Application to laser diode temperature monitoring
    Földesy, Péter
    Jánoki, Imre
    Nagy, Ádám
    Siket, Máté
    Zarándy, Ákos
    Sensors and Actuators A: Physical, 2022, 337
  • [29] Temperature characteristic of silicon resonant accelerometer
    Wang, W. (yfwangwei@vip.sina.com), 1600, Editorial Department of Journal of Chinese Inertial Technology (21):
  • [30] A THEORETICAL AND EXPERIMENTAL DETERMINATION OF THE INTERNAL QUANTUM EFFICIENCY OF SILICON PHOTODIODES
    Kovalev, A. A.
    Liberman, A. A.
    Mikryukov, A. S.
    Moskalyuk, S. A.
    Ulanovskii, M. V.
    MEASUREMENT TECHNIQUES, 2013, 56 (09) : 1031 - 1037