On the Kramers-Fokker-Planck equation with decreasing potentials in dimension one

被引:0
|
作者
Novak, Radek [1 ]
Wang, Xue Ping [2 ]
机构
[1] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Trojanova 13, CZ-12000 Prague 2, Czech Republic
[2] Univ Nantes, Lab Math Jean Leray, F-44322 Nantes 3, France
关键词
Kramers-Fokker-Planck equation; return to local equilibrium; threshold spectral analysis; pseudo-spectral estimates; HYPOELLIPTICITY; SCATTERING; RESOLVENT;
D O I
10.4171/JST/284
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For quickly decreasing potentials with one position variable, the first threshold zero is always a resonance of the Kramers-Fokker-Planck operator. In this article we study low-energy spectral properties of the operator and calculate large time asymptotics of solutions in terms of the Maxwellian.
引用
收藏
页码:1 / 32
页数:32
相关论文
共 50 条
  • [41] SIMILARITY SOLUTIONS OF THE ONE-DIMENSIONAL FOKKER-PLANCK EQUATION
    SUCCI, S
    IACONO, R
    PHYSICAL REVIEW A, 1986, 33 (06): : 4419 - 4422
  • [42] A numerical method for the Vlasov-Poisson-Fokker-Planck system in one dimension
    Wollman, S
    Ozizmir, E
    NEURAL, PARALLEL, AND SCIENTIFIC COMPUTATIONS, VOL 2, PROCEEDINGS, 2002, : 179 - 182
  • [43] One-parameter isospectral solutions for the Fokker-Planck equation
    Rubio-Ponce, A
    Peña, JJ
    Morales, J
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 339 (3-4) : 285 - 295
  • [44] Fokker-Planck equation and Langevin equation for one Brownian particle in a nonequilibrium bath
    Shea, JE
    Oppenheim, I
    JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (49): : 19035 - 19042
  • [45] Fokker-Planck equation and subdiffusive fractional Fokker-Planck equation of bistable systems with sinks
    Chow, CW
    Liu, KL
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 341 : 87 - 106
  • [46] On symmetries of the Fokker-Planck equation
    Kozlov, Roman
    JOURNAL OF ENGINEERING MATHEMATICS, 2013, 82 (01) : 39 - 57
  • [47] PROPERTIES OF FOKKER-PLANCK EQUATION
    LEWIS, MB
    HOGAN, JT
    PHYSICS OF FLUIDS, 1968, 11 (04) : 761 - &
  • [48] Dynamics of the Fokker-Planck equation
    Jordan, R
    Kinderlehrer, D
    Otto, F
    PHASE TRANSITIONS, 1999, 69 (03) : 271 - 288
  • [49] Parametric Fokker-Planck Equation
    Li, Wuchen
    Liu, Shu
    Zha, Hongyuan
    Zhou, Haomin
    GEOMETRIC SCIENCE OF INFORMATION, 2019, 11712 : 715 - 724
  • [50] A SOLUTION OF A FOKKER-PLANCK EQUATION
    ENGLEFIELD, MJ
    PHYSICA A, 1990, 167 (03): : 877 - 886