Self-similar shrinkers of the one-dimensional Landau-Lifshitz-Gilbert equation

被引:2
|
作者
Gutierrez, Susana [1 ]
de Laire, Andre [2 ]
机构
[1] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
[2] Univ Lille, CNRS, UMR 8524, Inria,Lab Paul Painleve, F-59000 Lille, France
关键词
Landau-Lifshitz-Gilbert equation; Self-similar expanders; Backward self-similar solutions; Blow up; Asymptotics; Ferromagnetic spin chain; Heat flow for harmonic maps; Quasi-harmonic sphere; HARMONIC MAP; HEAT-FLOW; SCHRODINGER MAP; VORTEX MOTION; SINGULARITIES; EXPANDERS; DYNAMICS; BLOWUP;
D O I
10.1007/s00028-020-00589-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main purpose of this paper is the analytical study of self-shrinker solutions of the one-dimensional Landau-Lifshitz-Gilbert equation (LLG), a model describing the dynamics for the spin in ferromagnetic materials. We show that there is a unique smooth family of backward self-similar solutions to the LLG equation, up to symmetries, and we establish their asymptotics. Moreover, we obtain that in the presence of damping, the trajectories of the self-similar profiles converge to great circles on the sphere S-2, at an exponential rate. In particular, the results presented in this paper provide examples of blow-up in finite time, where the singularity develops due to rapid oscillations forming limit circles.
引用
收藏
页码:473 / 501
页数:29
相关论文
共 50 条
  • [41] The inviscid limit for the Landau-Lifshitz-Gilbert equation in the critical Besov space
    ZiHua Guo
    ChunYan Huang
    Science China Mathematics, 2017, 60 : 2155 - 2172
  • [42] Weak-strong uniqueness for the Landau-Lifshitz-Gilbert equation in micromagnetics
    Di Fratta, Giovanni
    Innerberger, Michael
    Praetorius, Dirk
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2020, 55
  • [43] Study of type-III intermittency in the Landau-Lifshitz-Gilbert equation
    Bragard, J.
    Velez, J. A.
    Riquelme, J. A.
    Perez, L. M.
    Hernandez-Garcia, R.
    Barrientos, R. J.
    Laroze, D.
    PHYSICA SCRIPTA, 2021, 96 (12)
  • [44] The inviscid limit for the Landau-Lifshitz-Gilbert equation in the critical Besov space
    GUO ZiHua
    HUANG ChunYan
    Science China(Mathematics), 2017, 60 (11) : 2155 - 2172
  • [45] Numerical integration of Landau-Lifshitz-Gilbert equation based on the midpoint rule
    d'Aquino, M
    Serpico, C
    Miano, G
    Mayergoyz, ID
    Bertotti, G
    JOURNAL OF APPLIED PHYSICS, 2005, 97 (10)
  • [46] Numerical analysis of an explicit approximation scheme for the Landau-Lifshitz-Gilbert equation
    Bartels, Soren
    Ko, Joy
    Prohl, Andreas
    MATHEMATICS OF COMPUTATION, 2008, 77 (262) : 773 - 788
  • [47] Convergence of an implicit finite element method for the Landau-Lifshitz-Gilbert equation
    Bartels, Soren
    Prohl, Andreas
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (04) : 1405 - 1419
  • [48] The inviscid limit for the Landau-Lifshitz-Gilbert equation in the critical Besov space
    Guo ZiHua
    Huang ChunYan
    SCIENCE CHINA-MATHEMATICS, 2017, 60 (11) : 2155 - 2172
  • [49] Decomposition of modified Landau-Lifshitz-Gilbert equation and corresponding analytic solutions
    Kosugi, Taichi
    PHYSICAL REVIEW B, 2012, 86 (10):
  • [50] Vortex dynamics in the presence of excess energy for the Landau-Lifshitz-Gilbert equation
    Kurzke, Matthias
    Melcher, Christof
    Moser, Roger
    Spirn, Daniel
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 49 (3-4) : 1019 - 1043