Exergetic Performance Coefficient Analysis and Optimization of a High-Temperature Proton Exchange Membrane Fuel Cell

被引:13
|
作者
Li, Dongxu [1 ]
Li, Yanju [1 ]
Ma, Zheshu [1 ]
Zheng, Meng [1 ]
Lu, Zhanghao [1 ]
机构
[1] Nanjing Forestry Univ, Coll Automobile & Traff Engn, Nanjing 210037, Peoples R China
基金
中国国家自然科学基金;
关键词
HT-PEMFC; exergetic performance coefficient; performance optimization; ECOLOGICAL PERFORMANCE; POWER PRODUCTION; SYSTEM; THERMODYNAMICS; STRATEGIES; CATALYST; ENERGY;
D O I
10.3390/membranes12010070
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Performance of a high-temperature proton exchange membrane fuel cell (HT-PEMFC) and the influence of different parameters on HT-PEMFC is analyzed in this study. Firstly, mathematical expression for energy efficiency, power density, exergy destruction and exergetic performance coefficient (EPC) are derived. Then, the relationship between the dimensionless power density, exergy destruction rate, exergetic performance coefficient (EPC) and energy efficiency is compared. Furthermore, the effect of flow rate, doping level, inlet pressure and film thickness are considered to evaluate the performance of HT-PEMFC. Results show that EPC not only considers exergetic loss rate to minimize exergetic loss, but also considers the power density of HT-PEMFC to maximize its power density and improve its efficiency, so EPC represents a better performance criterion. In addition, increasing inlet pressure and doping level can improve EPC and energy efficiency, respectively.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Energetic, exergetic and ecological analyses of a high-temperature proton exchange membrane fuel cell based on a phosphoric-acid-doped polybenzimidazole membrane
    Guo, Yanhong
    Guo, Xinru
    Zhang, Houcheng
    Hou, Shujin
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2020, 38
  • [12] Experimentally and numerically investigating cell performance and localized characteristics for a high-temperature proton exchange membrane fuel cell
    Su, Ay
    Ferng, Yuh Ming
    Shih, Jah Ching
    APPLIED THERMAL ENGINEERING, 2009, 29 (16) : 3409 - 3417
  • [13] Maximization of high-temperature proton exchange membrane fuel cell performance with the optimum distribution of phosphoric acid
    Kwon, Yungjung
    Kim, Tae Young
    Yoo, Duck Young
    Hong, Suk-Gi
    Park, Jung Ock
    JOURNAL OF POWER SOURCES, 2009, 188 (02) : 463 - 467
  • [14] Influences of reformate on the performance of high temperature proton exchange membrane fuel cell and its optimization strategy
    Sun, Mu
    Huang, Jicai
    Xia, Zhangxun
    Yang, Congrong
    Jing, Fenning
    Wang, Suli
    Sun, Gongquan
    Chemical Engineering Journal, 2024, 498
  • [15] Influences of reformate on the performance of high temperature proton exchange membrane fuel cell and its optimization strategy
    Sun, Mu
    Huang, Jicai
    Xia, Zhangxun
    Yang, Congrong
    Jing, Fenning
    Wang, Suli
    Sun, Gongquan
    CHEMICAL ENGINEERING JOURNAL, 2024, 498
  • [16] Thermodynamic Optimization of a High Temperature Proton Exchange Membrane Fuel Cell for Fuel Cell Vehicle Applications
    Xu, Bing
    Li, Dongxu
    Ma, Zheshu
    Zheng, Meng
    Li, Yanju
    MATHEMATICS, 2021, 9 (15)
  • [17] Multi-Objective Assessment and Optimization of a High-Temperature Proton Exchange Membrane Fuel Cell: Steady-State Analysis
    Zhong, Zhaoda
    Araya, Samuel Simon
    Liso, Vincenzo
    Zhu, Jimin
    ENERGIES, 2023, 16 (24)
  • [18] Finite Time Thermodynamic Modeling and Performance Analysis of High-Temperature Proton Exchange Membrane Fuel Cells
    Li, Dongxu
    Ma, Zheshu
    Shao, Wei
    Li, Yanju
    Guo, Xinjia
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (16)
  • [19] Thermodynamic and Physical Simulation of a High-Temperature Proton-Exchange Membrane Fuel Cell
    Ivanov, P. P.
    HIGH TEMPERATURE, 2022, 60 (06) : 865 - 869
  • [20] Design and Experimental Characterization of a High-Temperature Proton Exchange Membrane Fuel Cell Stack
    Radu, Robert
    Zuliani, Nicola
    Taccani, Rodolfo
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2011, 8 (05):