Exergetic Performance Coefficient Analysis and Optimization of a High-Temperature Proton Exchange Membrane Fuel Cell

被引:13
|
作者
Li, Dongxu [1 ]
Li, Yanju [1 ]
Ma, Zheshu [1 ]
Zheng, Meng [1 ]
Lu, Zhanghao [1 ]
机构
[1] Nanjing Forestry Univ, Coll Automobile & Traff Engn, Nanjing 210037, Peoples R China
基金
中国国家自然科学基金;
关键词
HT-PEMFC; exergetic performance coefficient; performance optimization; ECOLOGICAL PERFORMANCE; POWER PRODUCTION; SYSTEM; THERMODYNAMICS; STRATEGIES; CATALYST; ENERGY;
D O I
10.3390/membranes12010070
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Performance of a high-temperature proton exchange membrane fuel cell (HT-PEMFC) and the influence of different parameters on HT-PEMFC is analyzed in this study. Firstly, mathematical expression for energy efficiency, power density, exergy destruction and exergetic performance coefficient (EPC) are derived. Then, the relationship between the dimensionless power density, exergy destruction rate, exergetic performance coefficient (EPC) and energy efficiency is compared. Furthermore, the effect of flow rate, doping level, inlet pressure and film thickness are considered to evaluate the performance of HT-PEMFC. Results show that EPC not only considers exergetic loss rate to minimize exergetic loss, but also considers the power density of HT-PEMFC to maximize its power density and improve its efficiency, so EPC represents a better performance criterion. In addition, increasing inlet pressure and doping level can improve EPC and energy efficiency, respectively.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Performance Analysis Based on Energetic and Exergetic Ecological Index of a High-Temperature Proton Exchange Membrane Fuel Cell
    Zhong, Zhaoda
    Araya, Samuel Simon
    Liso, Vincenzo
    [J]. PROCEEDINGS OF THE 10TH HYDROGEN TECHNOLOGY CONVENTION, VOL 3, WHTC 2023, 2024, 395 : 226 - 233
  • [2] Performance Investigation of High-Temperature Proton Exchange Membrane Fuel Cell
    Igbal, Mohamad Zaqwan Mohd
    Rosli, Masli Irwan
    Panuh, Dedikarni
    [J]. JURNAL KEJURUTERAAN, 2018, 1 (04): : 1 - 6
  • [3] Ecological Performance Optimization of a High Temperature Proton Exchange Membrane Fuel Cell
    Li, Dongxu
    Li, Siwei
    Ma, Zheshu
    Xu, Bing
    Lu, Zhanghao
    Li, Yanju
    Zheng, Meng
    [J]. MATHEMATICS, 2021, 9 (12)
  • [4] Exergy Analysis of High-Temperature Proton Exchange Membrane Fuel Cell Systems
    Ye, Lin
    Jiao, Kui
    Du, Qing
    Yin, Yan
    [J]. INTERNATIONAL JOURNAL OF GREEN ENERGY, 2015, 12 (09) : 917 - 929
  • [5] Thermodynamic Modeling and Performance Analysis of Vehicular High-Temperature Proton Exchange Membrane Fuel Cell System
    Li, Yanju
    Li, Dongxu
    Ma, Zheshu
    Zheng, Meng
    Lu, Zhanghao
    [J]. MEMBRANES, 2022, 12 (01)
  • [6] Performance Analysis Based on Sustainability Exergy Indicators of High-Temperature Proton Exchange Membrane Fuel Cell
    Guo, Xinjia
    Xu, Bing
    Ma, Zheshu
    Li, Yanju
    Li, Dongxu
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (17)
  • [7] Performance evaluation of an air-breathing high-temperature proton exchange membrane fuel cell
    Wu, Qixing
    Li, Haiyang
    Yuan, Wenxiang
    Luo, Zhongkuan
    Wang, Fang
    Sun, Hongyuan
    Zhao, Xuxin
    Fu, Huide
    [J]. APPLIED ENERGY, 2015, 160 : 146 - 152
  • [8] Dynamic modeling of a high-temperature proton exchange membrane fuel cell with a fuel processor
    Park, Jaeman
    Min, Kyoungdoug
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (20) : 10683 - 10696
  • [9] Effect of different fuel options on performance of high-temperature PEMFC (proton exchange membrane fuel cell) systems
    Authayanun, Suthida
    Saebea, Dang
    Patcharavorachot, Yaneeporn
    Arpornwichanop, Amornchai
    [J]. ENERGY, 2014, 68 : 989 - 997
  • [10] Optimization of high-temperature proton exchange membrane fuel cell flow channel based on genetic algorithm
    Huang, Taiming
    Wang, Wei
    Yuan, Yao
    Huang, Jie
    Chen, Xi
    Zhang, Jing
    Kong, Xiangzhong
    Zhang, Yan
    Wan, Zhongmin
    [J]. ENERGY REPORTS, 2021, 7 : 1374 - 1384