Deriving intuition in catalyst design with machine learning

被引:3
|
作者
Rodrigues, Tiago [1 ]
机构
[1] Univ Lisbon, Fac Farm, Inst Invest Med iMed, Ave Prof Gama Pinto, P-1649003 Lisbon, Portugal
来源
CHEM | 2022年 / 8卷 / 01期
关键词
D O I
10.1016/j.chempr.2021.12.006
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Catalysts for asymmetric syntheses provide a powerful means to manipulate and obtain matter with defined stereochemistry. In a recent issue of Cell Reports Physical Science, Kanai and colleagues report on a data-driven approach to identify key components in iridium/boron catalysts for the on-demand synthesis of stereochemically defined alpha-allyl carboxylic acids.
引用
收藏
页码:15 / +
页数:3
相关论文
共 50 条
  • [21] Design of Interactive Learning System Based on Intuition Concept Space
    He, Ping
    JOURNAL OF COMPUTERS, 2010, 5 (03) : 479 - 487
  • [22] MACHINE LEARNING IN DESIGN
    DUFFY, AHB
    ARTIFICIAL INTELLIGENCE IN ENGINEERING, 1993, 8 (03): : 157 - 158
  • [23] Machine learning for heterogeneous catalyst design and discovery (vol 64, pg 2311, 2018)
    Goldsmith, B. R.
    Esterhuizen, J.
    Liu, J-X
    Bartel, C. J.
    Sutton, C.
    AICHE JOURNAL, 2018, 64 (09) : 3553 - 3553
  • [24] Machine learning for predicting catalytic ammonia decomposition: An approach for catalyst design and performance prediction
    Guo, Wenjuan
    Shafizadeh, Alireza
    Shahbeik, Hossein
    Rafiee, Shahin
    Motamedi, Shahrzad
    Nia, Seyyed Alireza Ghafarian
    Nadian, Mohammad Hossein
    Li, Fanghua
    Pan, Junting
    Tabatabaei, Meisam
    Aghbashlo, Mortaza
    JOURNAL OF ENERGY STORAGE, 2024, 89
  • [25] Machine learning and text mining approaches to design selective catalyst reduction synthesis routes
    Li, Shuyuan
    Huang, Chenyu
    Zhang, Yunjiang
    Li, Jing
    Sun, Shaorui
    CATALYSIS SCIENCE & TECHNOLOGY, 2025, 15 (04) : 1217 - 1227
  • [26] Indirect design of OCM catalysts through machine learning of catalyst surface oxygen species
    Nishino, Fumiya
    Yoshida, Hiroshi
    Machida, Masato
    Nishimura, Shun
    Takahashi, Keisuke
    Ohyama, Junya
    CATALYSIS SCIENCE & TECHNOLOGY, 2023, 13 (19) : 5576 - 5581
  • [27] Deriving transmission losses in ephemeral rivers using satelliteimagery and machine learning
    Di Ciacca, Antoine
    Wilson, Scott
    Kang, Jasmine
    Woehling, Thomas
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2023, 27 (03) : 703 - 722
  • [28] Applying machine learning algorithms for deriving personality traits in social network
    Araujo, Eric F. M.
    Simoski, Bojan
    Klein, Michel
    33RD ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, 2018, : 346 - 349
  • [29] Mol2vec: Unsupervised Machine Learning Approach with Chemical Intuition
    Jaeger, Sabrina
    Fulle, Simone
    Turk, Samo
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2018, 58 (01) : 27 - 35
  • [30] Deriving design course learning outcomes from a professional profile
    Davis, Denny C.
    Beyerlein, Steven W.
    Davis, Isadore T.
    INTERNATIONAL JOURNAL OF ENGINEERING EDUCATION, 2006, 22 (03) : 439 - 446