Deriving intuition in catalyst design with machine learning

被引:3
|
作者
Rodrigues, Tiago [1 ]
机构
[1] Univ Lisbon, Fac Farm, Inst Invest Med iMed, Ave Prof Gama Pinto, P-1649003 Lisbon, Portugal
来源
CHEM | 2022年 / 8卷 / 01期
关键词
D O I
10.1016/j.chempr.2021.12.006
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Catalysts for asymmetric syntheses provide a powerful means to manipulate and obtain matter with defined stereochemistry. In a recent issue of Cell Reports Physical Science, Kanai and colleagues report on a data-driven approach to identify key components in iridium/boron catalysts for the on-demand synthesis of stereochemically defined alpha-allyl carboxylic acids.
引用
收藏
页码:15 / +
页数:3
相关论文
共 50 条
  • [1] Catalyst design with machine learning
    Xin, Hongliang
    NATURE ENERGY, 2022, 7 (09) : 790 - 791
  • [2] Catalyst design with machine learning
    Hongliang Xin
    Nature Energy, 2022, 7 : 790 - 791
  • [3] Application of Machine Learning to Catalyst Design and
    Omata, Kohji
    JOURNAL OF THE JAPAN PETROLEUM INSTITUTE, 2025, 68 (01) : 10 - 19
  • [4] Catalyst Design by Machine Learning and Multiobjective Optimization
    Kurogi, Takayuki
    Etou, Mayumi
    Hamada, Rei
    Sakai, Shingo
    JOURNAL OF THE JAPAN PETROLEUM INSTITUTE, 2020, 64 (05) : 256 - 260
  • [5] Machine learning for heterogeneous catalyst design and discovery
    Goldsmith, Bryan R.
    Esterhuizen, Jacques
    Liu, Jin-Xun
    Bartel, Christopher J.
    Sutton, Christopher
    AICHE JOURNAL, 2018, 64 (07) : 2311 - 2323
  • [6] Machine Learning Ethics in the Context of Justice Intuition
    Mamedova, Natalia
    Urintsov, Arkadiy
    Komleva, Nina
    Staroverova, Olga
    Fedorov, Boris
    INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE CURRENT ISSUES OF LINGUISTICS AND DIDACTICS: THE INTERDISCIPLINARY APPROACH IN HUMANITIES AND SOCIAL SCIENCES (CILDIAH-2019), 2019, 69
  • [7] Application of Machine Learning to Catalyst Design and Process Design for Methanol Synthesis
    Omata, Kohji
    Journal of the Japan Petroleum Institute, 68 (01): : 10 - 19
  • [8] Navigating through the Maze of Homogeneous Catalyst Design with Machine Learning
    Gomes, Gabriel dos Passos
    Pollice, Robert
    Aspuru-Guzik, Alan
    TRENDS IN CHEMISTRY, 2021, 3 (02): : 96 - 110
  • [9] Feature engineering of machine-learning chemisorption models for catalyst design
    Li, Zheng
    Ma, Xianfeng
    Xin, Hongliang
    CATALYSIS TODAY, 2017, 280 : 232 - 238
  • [10] Feature engineering of machine-learning chemisorption models for catalyst design
    Xin, Hongliang
    Wang, Siwen
    Ma, Xianfeng
    Li, Zheng
    Achenie, Luke
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252