Autopilot for Landing Small Fixed-Wing Unmanned Aerial Vehicles with Optical Sensors

被引:8
|
作者
Trittler, Martin [1 ]
Rothermel, Thomas [2 ]
Fichter, Walter [1 ]
机构
[1] Univ Stuttgart, Inst Flight Mech & Control, D-70569 Stuttgart, Germany
[2] Univ Stuttgart, Inst Automot Engn, D-70569 Stuttgart, Germany
关键词
MONOCULAR VISION; SYSTEM;
D O I
10.2514/1.G000261
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
An autopilot for landing fixed-wing mini-unmanned aerial vehicles is presented in this paper. The objective was to land at a site, which is defined by three artificial visual markers placed by the operator in a triangular shape. Therefore, the landing can be realized without any map data or previously measured landing coordinates, as well as in the absence of Global Positioning System measurements. A visual-servoing controller has been developed, which uses direct feedback from, at minimum, an inertial navigation system, an airspeed sensor, and camera-image features. The image features are used to reconstruct the approach-path deviations based on the defined triangular marker geometry. The visual-servoing controller is based on strong linearizations, while at the same time being robust, simple to implement, and sufficiently accurate. In the final stage of the landing, the base markers of the triangle leave the camera's field of view. A single optical marker and two optical-flow sensors are applied to control the touchdown phase. The proposed configuration of the flow sensors and the use of the sensor's inherent nonlinearity lead to a simple but effective controller for a coordinated roundout and touchdown relative to the true ground. Flight-test results show the feasibility of the presented method, which can be realized with relatively low additional payload and power budget constraints and moderate computational effort.
引用
下载
收藏
页码:2011 / 2021
页数:11
相关论文
共 50 条
  • [1] Trajectory Planning for Emergency Landing of VTOL Fixed-Wing Unmanned Aerial Vehicles
    Deng, Zhao
    Guo, Zhiming
    Wu, Liaoni
    You, Yancheng
    MOBILE INFORMATION SYSTEMS, 2021, 2021
  • [2] Autonomous Runway Alignment of Fixed-Wing Unmanned Aerial Vehicles in Landing Phase
    Pouya, Soha
    Saghafi, Fariborz
    ICAS: 2009 FIFTH INTERNATIONAL CONFERENCE ON AUTONOMIC AND AUTONOMOUS SYSTEMS, 2009, : 208 - 213
  • [3] Automatic terminal guidance for small fixed-wing unmanned aerial vehicles
    Yang, Yachao
    Li, Jie
    Liu, Chang
    Yang, Yu
    Li, Juan
    Wang, Zhenbei
    Wu, Xueyong
    Fu, Lei
    Xu, Xiao
    JOURNAL OF FIELD ROBOTICS, 2023, 40 (01) : 3 - 29
  • [4] On the Coordination of Constrained Fixed-Wing Unmanned Aerial Vehicles
    Jesus, Tales Argolo
    de Araujo Pimenta, Luciano Cunha
    Borges Torres, Leonardo Antonio
    Andrade Marcal Mendes, Eduardo Mazoni
    JOURNAL OF CONTROL AUTOMATION AND ELECTRICAL SYSTEMS, 2013, 24 (05) : 585 - 600
  • [5] Disturbance Rejection Flight Control for Small Fixed-Wing Unmanned Aerial Vehicles
    Liu, Cunjia
    Chen, Wen-Hua
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2016, 39 (12) : 2804 - 2813
  • [6] Autonomous Navigation and Landing Tasks for Fixed Wing Small Unmanned Aerial Vehicles
    Kurnaz, Sefer
    Cetin, Omer
    ACTA POLYTECHNICA HUNGARICA, 2010, 7 (01) : 87 - 102
  • [7] Collision-Avoidance Framework for Small Fixed-Wing Unmanned Aerial Vehicles
    Schmitt, Lorenz
    Fichter, Walter
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2014, 37 (04) : 1323 - 1328
  • [8] Formation Flight of Multiple Fixed-wing Unmanned Aerial Vehicles
    Zhang, Mingfeng
    Liu, Hugh H. T.
    2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 1614 - 1619
  • [9] Aerobatic Flight for Robotic Fixed-Wing Unmanned Aerial Vehicles
    Basescu, Max R.
    Moore, Joseph L.
    Johns Hopkins APL Technical Digest (Applied Physics Laboratory), 2021, 35 (04): : 453 - 456
  • [10] Experimental cooperative control of fixed-wing unmanned aerial vehicles
    Bayraktar, S
    Fainekos, GE
    Pappas, GJ
    2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, : 4292 - 4298