Large sum-free sets in ternary spaces

被引:9
|
作者
Lev, VF [1 ]
机构
[1] Univ Haifa, Dept Math, IL-36006 Tivon, Israel
关键词
sum-free sets;
D O I
10.1016/j.jcta.2005.01.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that any sum-free subset A subset of F-3(r) (with an integer r >= 3), satisfying vertical bar A vertical bar > 5 (.) 3(r-3), is contained in a hyperplane. This bound is best possible: there exist sum-free subsets of cardinality vertical bar A vertical bar = 5 (.) 3(r-3) not contained in a hyperplane. Conjecturally, if A subset of F-3(r) is maximal sum-free and aperiodic (not a union of cosets of a non-zero subgroup), then vertical bar A broken vertical bar <= (3(r-1) +])/2. If true, this is best possible and allows one for any fixed epsilon > 0 to establish the structure of all sum-free subsets A subset of F-3(r) such that vertical bar A vertical bar > (1/6 + epsilon) (.) 3(r). (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:337 / 346
页数:10
相关论文
共 50 条
  • [21] On a class of aperiodic sum-free sets
    Calkin, NJ
    Erdos, P
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1996, 120 : 1 - 5
  • [22] Small maximal sum-free sets
    Giudici, Michael
    Hart, Sarah
    ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01):
  • [23] Short coverings in tridimensional spaces arising from sum-free sets
    Carmelo, E. L. Monte
    Nakaoka, I. N.
    EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (01) : 227 - 233
  • [24] SUM-FREE SETS IN VECTOR-SPACES OVER GF(2)
    CLARK, WE
    PEDERSEN, J
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1992, 61 (02) : 222 - 229
  • [25] Sum-free sets in abelian groups
    Vsevolod F. Lev
    Tomasz Łuczak
    Tomasz Schoen
    Israel Journal of Mathematics, 2001, 125 : 347 - 367
  • [26] A NOTE ON THE DENSITY OF SUM-FREE SETS
    LUCZAK, T
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1995, 70 (02) : 334 - 336
  • [27] Sum-free sets in abelian groups
    Green, B
    ISRAEL JOURNAL OF MATHEMATICS, 2005, 147 (1) : 157 - 188
  • [28] On the structure of sum-free sets, 2
    Deshouillers, JM
    Freiman, GA
    Sós, V
    Temkin, M
    ASTERISQUE, 1999, (258) : 149 - 161
  • [29] SUM-FREE SETS AND RAMSEY NUMBERS
    HANSON, D
    DISCRETE MATHEMATICS, 1976, 14 (01) : 57 - 61
  • [30] Notes on sum-free and related sets
    Cameron, PJ
    Erdos, P
    COMBINATORICS PROBABILITY & COMPUTING, 1999, 8 (1-2): : 95 - 107