Well-posedness and attractor on the 2D Kirchhoff-Boussinesq models

被引:2
|
作者
Feng, Na [1 ]
Yang, Zhijian [2 ]
机构
[1] Zhongyuan Univ Technol, Coll Sci, 41 Zhongyuan Rd, Zhengzhou 450007, Peoples R China
[2] Zhengzhou Univ, Sch Math & Stat, 100 Sci Rd, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
Kirchhoff-Boussinesq models; Well-posedness; Global attractor; Exponential attractor; CAHN-HILLIARD EQUATION; GLOBAL EXISTENCE; LONGTIME DYNAMICS; SMOOTH SOLUTIONS; WAVE-EQUATION; STABILITY;
D O I
10.1016/j.na.2020.111803
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper studies the well-posedness and the existence of attractors for a class of 2D Kirchhoff-Boussinesq models: u(tt) + ku(t) +Delta(2)u = gamma div{del u/root 1+vertical bar del u vertical bar(2)} + beta Delta g(u), with beta >= 0, gamma >= 0, beta + gamma > 0. We show that: (i) the IBVP of the equations is well-posed in natural energy space X-2 and strong solution space X-4, respectively, provided that vertical bar g ''(s)vertical bar <= C(1 + vertical bar s vertical bar(2)); (ii) the related solution semigroup has a global and an (generalized) exponential attractor in X-2 provided that the damping parameter k is suitably large and vertical bar g ''(s)vertical bar <= C; (iii) in particular when gamma = 0, the corresponding Boussinesq model has a subclass J of limit solutions and the subclass J has a weak global attractor in energy space X-1 without any upper bound restriction for the growth exponent of g(u); (iv) in the cases that either beta = 0 or gamma = 0, the corresponding model has a global attractor in X-4 provided that vertical bar g ''(s)vertical bar <= C(1 + vertical bar s vertical bar) and without any restriction for the damping parameter k > 0. Especially when gamma = 0, the corresponding results extend those in Grassell et al. (2009). (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:29
相关论文
共 50 条
  • [21] GLOBAL WELL-POSEDNESS OF THE STOCHASTIC 2D BOUSSINESQ EQUATIONS WITH PARTIAL VISCOSITY
    蒲学科
    郭柏灵
    ActaMathematicaScientia, 2011, 31 (05) : 1968 - 1984
  • [22] Global well-posedness of a model on 2D Boussinesq–Bénard equations
    Li, Chaoying
    Xu, Xiaojing
    Ye, Zhuan
    Zeitschrift fur Angewandte Mathematik und Physik, 2021, 72 (01):
  • [23] Global well-posedness of the 2D Boussinesq equations with fractional Laplacian dissipation
    Ye, Zhuan
    Xu, Xiaojing
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (08) : 6716 - 6744
  • [24] Oscillatory integral estimates and global well-posedness for the 2D Boussinesq equation
    Farah, Luiz Gustavo
    Rousset, Frederic
    Tzvetkov, Nikolay
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2012, 43 (04): : 655 - 679
  • [25] GLOBAL WELL-POSEDNESS FOR THE 2D FRACTIONAL BOUSSINESQ EQUATIONS IN THE SUBCRITICAL CASE
    Zhou, Daoguo
    Li, Zilai
    Shang, Haifeng
    Wu, Jiahong
    Yuan, Baoquan
    Zhao, Jiefeng
    PACIFIC JOURNAL OF MATHEMATICS, 2019, 298 (01) : 233 - 255
  • [26] Global well-posedness of a model on 2D Boussinesq–Bénard equations
    Chaoying Li
    Xiaojing Xu
    Zhuan Ye
    Zeitschrift für angewandte Mathematik und Physik, 2021, 72
  • [27] Oscillatory integral estimates and global well-posedness for the 2D Boussinesq equation
    Luiz Gustavo Farah
    Frederic Rousset
    Nikolay Tzvetkov
    Bulletin of the Brazilian Mathematical Society, New Series, 2012, 43 : 655 - 679
  • [28] Global well-posedness for 2D Boussinesq system with general supercritical dissipation
    Fang, Daoyuan
    Qian, Chenyin
    Zhang, Ting
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 27 : 326 - 349
  • [29] Persistence of global well-posedness for the 2D Boussinesq equations with fractional dissipation
    Su, Xing
    Wang, Gangwei
    Wang, Yue
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [30] Existence, uniqueness of weak solutions and global attractors for a class of nonlinear 2D Kirchhoff-Boussinesq models
    Chueshov, I
    Lasiecka, I
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2006, 15 (03) : 777 - 809