Automated detection of COVID-19 on a small dataset of chest CT images using metric learning

被引:0
|
作者
Madan, Shipra [1 ]
Chaudhury, Santanu [2 ]
Gandhi, Tapan Kumar [1 ]
机构
[1] Indian Inst Technol, Dept Elect Engn, Delhi, India
[2] Indian Inst Technol, Dept Comp Sci & Engn, Jodhpur, Rajasthan, India
关键词
COVID-19; Triplet loss; chest CT; few-shot learning; medical image analysis;
D O I
10.1109/IJCNN52387.2021.9533831
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Coronavirus disease has caused unprecedented chaos across the globe causing potentially fatal pneumonia, since the beginning of 2020. Researchers from different communities are working in conjunction with front-line doctors and policy-makers to better understand the disease. The key to prevent the spread is a rapid diagnosis, prioritized isolation, and fastidious contact tracing. Recent studies have confirmed the presence of underlying patterns on chest CT for patients with COVID-19. We present a completely automated framework to detect COVID-19 using chest CT scans, only needing a small number of training samples. We present a few-shot learning technique based on the Triplet network in comparison to the conventional deep learning techniques which require a substantial amount of training examples. We used 140 chest CT images for training and the rest for testing from a total of 2482 images for both COVID-19 and non-COVID-19 cases from a publicly available dataset. The model trained with chest CT images achieves an AUC of 0.94, separates the two classes into distinct clusters; thereby giving correct prediction accuracy on the evaluation dataset.
引用
下载
收藏
页数:8
相关论文
共 50 条
  • [41] COVID-19 Detection in Chest X-ray Images using a Deep Learning Approach
    Saiz, Fatima A.
    Barandiaran, Inigo
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2020, 6 (02): : 11 - 14
  • [42] COVID-19 classification based on a deep learning and machine learning fusion technique using chest CT images
    Gerges M. Salama
    Asmaa Mohamed
    Mahmoud Khaled Abd-Ellah
    Neural Computing and Applications, 2024, 36 : 5347 - 5365
  • [43] COVID-19 Detection Using Deep Learning Algorithm on Chest X-ray Images
    Akter, Shamima
    Shamrat, F. M. Javed Mehedi
    Chakraborty, Sovon
    Karim, Asif
    Azam, Sami
    BIOLOGY-BASEL, 2021, 10 (11):
  • [44] Improved COVID-19 detection with chest x-ray images using deep learning
    Vedika Gupta
    Nikita Jain
    Jatin Sachdeva
    Mudit Gupta
    Senthilkumar Mohan
    Mohd Yazid Bajuri
    Ali Ahmadian
    Multimedia Tools and Applications, 2022, 81 : 37657 - 37680
  • [45] COVID-19 detection from chest X-ray images using transfer learning
    El Houby, Enas M. F.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [46] Detection of COVID-19 from chest x-ray images using transfer learning
    Manokaran, Jenita
    Zabihollahy, Fatemeh
    Hamilton-Wright, Andrew
    Ukwatta, Eranga
    JOURNAL OF MEDICAL IMAGING, 2021, 8 (S1)
  • [47] Improved COVID-19 detection with chest x-ray images using deep learning
    Gupta, Vedika
    Jain, Nikita
    Sachdeva, Jatin
    Gupta, Mudit
    Mohan, Senthilkumar
    Bajuri, Mohd Yazid
    Ahmadian, Ali
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (26) : 37657 - 37680
  • [48] COVID-19 Detection Using Chest X-Ray Images Based on Deep Learning
    Sani, Sudeshna
    Bera, Abhijit
    Mitra, Dipra
    Das, Kalyani Maity
    INTERNATIONAL JOURNAL OF SOFTWARE SCIENCE AND COMPUTATIONAL INTELLIGENCE-IJSSCI, 2022, 14 (01):
  • [49] An automated diagnosis and classification of COVID-19 from chest CT images using a transfer learning-based convolutional neural network
    Baghdadi, Nadiah A.
    Malki, Amer
    Abdelaliem, Sally F.
    Balaha, Hossam Magdy
    Badawy, Mahmoud
    Elhosseini, Mostafa
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 144
  • [50] COVID-rate: an automated framework for segmentation of COVID-19 lesions from chest CT images
    Enshaei, Nastaran
    Oikonomou, Anastasia
    Rafiee, Moezedin Javad
    Afshar, Parnian
    Heidarian, Shahin
    Mohammadi, Arash
    Plataniotis, Konstantinos N.
    Naderkhani, Farnoosh
    SCIENTIFIC REPORTS, 2022, 12 (01)