Estimation of Parameters in a Bivariate Generalized Exponential Distribution Based on Type-II Censored Samples

被引:5
|
作者
Kim, Seong W. [1 ]
Ng, Hon Keung Tony [2 ]
Jang, Hakjin [1 ]
机构
[1] Hanyang Univ, Dept Appl Math, Seoul, South Korea
[2] Southern Methodist Univ, Dept Stat Sci, Dallas, TX 75275 USA
基金
新加坡国家研究基金会;
关键词
Bayesian estimation; Dependence measure; Maximum likelihood estimation; Monte Carlo simulation; Numerical method; 62F10; 62F15; 62H12; EM ALGORITHM; KENDALLS TAU;
D O I
10.1080/03610918.2015.1130834
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we discuss the maximum likelihood estimation and Bayesian estimation procedures for estimating the parameters in an absolute continuous bivariate generalized exponential distribution based on Type-II censored samples. A Markov chain Monte Carlo method is applied to compute the Bayes estimates. We also propose a method to obtain the initial estimates of the parameters for the required iterative algorithm. A simulation study is used to evaluate the performance of the proposed estimation procedures. Two real data examples are utilized to illustrate the methodology developed in this manuscript.
引用
下载
收藏
页码:3776 / 3797
页数:22
相关论文
共 50 条