Boosting Naturalness of Language in Task-oriented Dialogues via Adversarial Training

被引:0
|
作者
Zhu, Chenguang [1 ]
机构
[1] Microsoft, Speech & Dialogue Res Grp, Redmond, WA 98052 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The natural language generation (NLG) module in a task-oriented dialogue system produces user-facing utterances conveying required information. Thus, it is critical for the generated response to be natural and fluent. We propose to integrate adversarial training to produce more human-like responses. The model uses Straight-Through Gumbel-Softmax estimator for gradient computation. We also propose a two-stage training scheme to boost performance. Empirical results show that the adversarial training can effectively improve the quality of language generation in both automatic and human evaluations. For example, in the RNN-LG Restaurant dataset, our model AdvNLG outperforms the previous state-of-the-art result by 3.6% in BLEU.
引用
收藏
页码:265 / 271
页数:7
相关论文
共 50 条
  • [41] Analysis of changes in dialogue rhythm due to dialogue acts in task-oriented dialogues
    Fujiwara, Noriki
    Itoh, Toshihiko
    Araki, Kenji
    TEXT, SPEECH AND DIALOGUE, PROCEEDINGS, 2007, 4629 : 564 - 573
  • [42] Generating Synthetic Dialogues from Prompts to Improve Task-Oriented Dialogue Systems
    Steindl, Sebastian
    Schaefer, Ulrich
    Ludwig, Bernd
    ADVANCES IN ARTIFICIAL INTELLIGENCE, KI 2023, 2023, 14236 : 207 - 214
  • [43] Gesture, prosody and lexicon in task-oriented dialogues: Multimedia corpus recording and labelling
    Jarmolowicz, Ewa
    Karpinski, Maciej
    Malisz, Zofia
    Szczyszek, Michal
    VERBAL AND NONVERBAL COMMUNICATION BEHAVIOURS, 2007, 4775 : 99 - +
  • [44] Multi-User MultiWOZ: Task-Oriented Dialogues among Multiple Users
    Jo, Yohan
    Zhao, Xinyan
    Biswas, Arijit
    Basiou, Nikoletta
    Auvray, Vincent
    Malandrakis, Nikolaos
    Metallinou, Angeliki
    Potamianos, Alexandros
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS - EMNLP 2023, 2023, : 3237 - 3269
  • [45] UniDS: A Unified Dialogue System for Chit-Chat and Task-oriented Dialogues
    Zhao, Xinyan
    He, Bin
    Wang, Yasheng
    Li, Yitong
    Mi, Fei
    Liu, Yajiao
    Jiang, Xin
    Liu, Qun
    Chen, Huanhuan
    PROCEEDINGS OF THE SECOND DIALDOC WORKSHOP ON DOCUMENT-GROUNDED DIALOGUE AND CONVERSATIONAL QUESTION ANSWERING (DIALDOC 2022), 2022, : 13 - 22
  • [46] HaGAN: Hierarchical Attentive Adversarial Learning for Task-Oriented Dialogue System
    Fang, Ting
    Qiao, Tingting
    Xu, Duanqing
    NEURAL INFORMATION PROCESSING (ICONIP 2019), PT I, 2019, 11953 : 98 - 109
  • [47] Co-reference in Japanese Task-oriented dialogues: A contribution to the development of language-specific and language-general annotation schemes and resources
    Sasaki, Felix
    Witt, Andreas
    Proc. Int. Conf. Lang. Resourc. Eval., LREC, 1600, (655-658):
  • [48] Multi-task Learning for Natural Language Generation in Task-Oriented Dialogue
    Zhu, Chenguang
    Zeng, Michael
    Huang, Xuedong
    2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019): PROCEEDINGS OF THE CONFERENCE, 2019, : 1261 - 1266
  • [49] Natural Language Generation for Socially Competent Task-Oriented Agent
    Vanel, Lorraine
    2023 11TH INTERNATIONAL CONFERENCE ON AFFECTIVE COMPUTING AND INTELLIGENT INTERACTION WORKSHOPS AND DEMOS, ACIIW, 2023,
  • [50] DexTOG: Learning Task-Oriented Dexterous Grasp With Language Condition
    Zhang, Jieyi
    Xu, Wenqiang
    Yu, Zhenjun
    Xie, Pengfei
    Tang, Tutian
    Lu, Cewu
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2025, 10 (02): : 995 - 1002