Carboxymethyl cellulose enables silk fibroin nanofibrous scaffold with enhanced biomimetic potential for bone tissue engineering application

被引:114
|
作者
Singh, B. N. [1 ]
Panda, N. N. [1 ]
Mund, R. [1 ]
Pramanik, K. [1 ]
机构
[1] Natl Inst Technol, Dept Biotechnol & Med Engn, Rourkela, India
关键词
Silk fibroin; Electrospinning; Carboxymethyl cellulose; Calcium phosphate; Tissue engineered scaffold; COMPOSITE; MEMBRANE; RHEOLOGY; BIOCOMPATIBILITY; MINERALIZATION; CELLS; HEAVY; MAT; PH;
D O I
10.1016/j.carbpol.2016.05.088
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Novel silk fibroin (SF) and carboxymethyl cellulose (CMC) composite nanofibrous scaffold (SFC) were developed to investigate their ability to nucleate bioactive nanosized calcium phosphate (Ca/P) by biomineralization for bone tissue engineering application. The composite nanofibrous scaffold was prepared by free liquid surface electrospinning method. The developed composite nanofibrous scaffold was observed to control the size of Ca/P particle (<= 100 nm) as well as uniform nucleation of Ca/P over the surface. The obtained nanofibrous scaffolds were fully characterized for their functional, structural and mechanical property. The XRD and EDX analysis depicted the development of apatite like crystals over SFC scaffolds of nanospherical in morphology and distributed uniformly throughout the surface of scaffold. Additionally, hydrophilicity as a measure of contact angle and water uptake capacity is higher than pure SF scaffold representing the superior cell supporting property of the SF/CMC scaffold. The effect of biomimetic Ca/P on osteogenic differentiation of umbilical cord blood derived human mesenchymal stem cells (hMSCs) studied in early and late stage of differentiation shows the improved osteoblastic differentiation capability as compared to pure silk fibroin. The obtained result confirms the positive correlation of alkaline phosphatase activity, alizarin staining and expression of runt-related transcription factor 2, osteocalcin and typel collagen representing the biomimetic property of the scaffolds. Thus, the developed composite has been demonstrated to be a potential scaffold for bone tissue engineering application. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:335 / 347
页数:13
相关论文
共 50 条
  • [1] Generation of bioactive nano-composite scaffold of nanobioglass/silk fibroin/carboxymethyl cellulose for bone tissue engineering
    Singh, B. N.
    Pramanik, K.
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2018, 29 (16) : 2011 - 2034
  • [2] A graded graphene oxide-hydroxyapatite/silk fibroin biomimetic scaffold for bone tissue engineering
    Wang, Qian
    Chu, Yanyan
    He, Jianxin
    Shao, Weili
    Zhou, Yuman
    Qi, Kun
    Wang, Lidan
    Cui, Shizhong
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2017, 80 : 232 - 242
  • [3] Enhanced potential of biomimetic, silver nanoparticles functionalized Antheraea mylitta (tasar) silk fibroin nanofibrous mats for skin tissue engineering
    Srivastava, Chandra Mohan
    Purwar, Roli
    Gupta, Anek Pal
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2019, 130 : 437 - 453
  • [4] Silk Fibroin-Based Scaffold for Bone Tissue Engineering
    Choi, Joo Hee
    Kim, Do Kyung
    Song, Jeong Eun
    Oliveira, Joaquim Miguel
    Reis, Rui Luis
    Khang, Gilson
    NOVEL BIOMATERIALS FOR REGENERATIVE MEDICINE, 2018, 1077 : 371 - 387
  • [5] The potential of biomimetic nanofibrous electrospun scaffold comprising dual component for bone tissue engineering
    Jaganathan, Saravana Kumar
    Mani, Mohan Prasath
    Nageswaran, Gomathi
    Krishnasamy, Navaneetha Pandiyaraj
    Ayyar, Manikandan
    INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION, 2019, 24 (03) : 204 - 218
  • [6] Biomimetic electrospun nanofibrous scaffold with shape memory effect for bone tissue engineering application
    Bao, Min
    Lou, Xiangxin
    Zhou, Qihui
    Dong, Wen
    Zhang, Yanzhong
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [7] A Biomimetic Silk Fibroin/Sodium Alginate Composite Scaffold for Soft Tissue Engineering
    Yiyu Wang
    Xinyu Wang
    Jian Shi
    Rong Zhu
    Junhua Zhang
    Zongrui Zhang
    Daiwei Ma
    Yuanjing Hou
    Fei Lin
    Jing Yang
    Mamoru Mizuno
    Scientific Reports, 6
  • [8] A Biomimetic Silk Fibroin/Sodium Alginate Composite Scaffold for Soft Tissue Engineering
    Wang, Yiyu
    Wang, Xinyu
    Shi, Jian
    Zhu, Rong
    Zhang, Junhua
    Zhang, Zongrui
    Ma, Daiwei
    Hou, Yuanjing
    Lin, Fei
    Yang, Jing
    Mizuno, Mamoru
    SCIENTIFIC REPORTS, 2016, 6
  • [9] Novel Blowspun Nanobioactive Glass Doped Polycaprolactone/Silk Fibroin Composite Nanofibrous Scaffold with Enhanced Osteogenic Property for Bone Tissue Engineering
    Agrawal, Parinita
    Pramanik, Krishna
    Bissoyi, Akalabya
    FIBERS AND POLYMERS, 2018, 19 (12) : 2465 - 2477
  • [10] Novel Blowspun Nanobioactive Glass Doped Polycaprolactone/Silk Fibroin Composite Nanofibrous Scaffold with Enhanced Osteogenic Property for Bone Tissue Engineering
    Parinita Agrawal
    Krishna Pramanik
    Akalabya Bissoyi
    Fibers and Polymers, 2018, 19 : 2465 - 2477