A lower bound on the complexity of polynomial multiplication over finite fields

被引:6
|
作者
Kaminski, M [1 ]
机构
[1] Technion Israel Inst Technol, Dept Comp Sci, IL-32000 Haifa, Israel
关键词
polynomial multiplication; quadratic algorithms; linear recurring sequences; Hankel matrices; error-correcting codes;
D O I
10.1137/S0097539704442118
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
It is shown that computing the coefficients of the product of two degree-n polynomials over a q-element field by means of a quadratic algorithm requires at least (3 + (q-1)(2)/ q(5)+( q- 1)(3)) n - o( n) multiplications.
引用
收藏
页码:960 / 992
页数:33
相关论文
共 50 条
  • [21] ON THE COMPLEXITY OF MULTIPLICATION IN FINITE-FIELDS
    LEMPEL, A
    SEROUSSI, G
    WINOGRAD, S
    THEORETICAL COMPUTER SCIENCE, 1983, 22 (03) : 285 - 296
  • [22] Faster polynomial multiplication over finite fields using cyclotomic coefficient rings
    Harvey, David
    van Der Hoeven, Loris
    JOURNAL OF COMPLEXITY, 2019, 54
  • [23] Polynomial Multiplication over Finite Fields in Time O(n log n)
    Harvey, David
    van der Hoeven, Joris
    JOURNAL OF THE ACM, 2022, 69 (02)
  • [24] Polynomial evaluation over finite fields: new algorithms and complexity bounds
    Elia, Michele
    Rosenthal, Joachim
    Schipani, Davide
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2012, 23 (3-4) : 129 - 141
  • [25] Polynomial evaluation over finite fields: new algorithms and complexity bounds
    Michele Elia
    Joachim Rosenthal
    Davide Schipani
    Applicable Algebra in Engineering, Communication and Computing, 2012, 23 : 129 - 141
  • [26] LOWER BOUNDS OF COMPLEXITY FOR POLARIZED POLYNOMIALS OVER FINITE FIELDS
    Baliuk, A. S.
    Zinchenko, A. S.
    SIBERIAN MATHEMATICAL JOURNAL, 2019, 60 (01) : 1 - 9
  • [27] Lower Bounds of Complexity for Polarized Polynomials over Finite Fields
    A. S. Baliuk
    A. S. Zinchenko
    Siberian Mathematical Journal, 2019, 60 : 1 - 9
  • [28] Polynomial Constructions of Chudnovsky-type Algorithms for Multiplication in Finite Fields with Linear Bilinear Complexity
    Ballet, Ephane
    Bonnecaze, Alexis
    Pacifico, Bastien
    ARITHMETIC OF FINITE FIELDS, WAIFI 2022, 2023, 13638 : 35 - 52
  • [29] Private Multiplication over Finite Fields
    Belaid, Sonia
    Benhamouda, Fabrice
    Passelegue, Alain
    Prouff, Emmanuel
    Thillard, Adrian
    Vergnaud, Damien
    ADVANCES IN CRYPTOLOGY - CRYPTO 2017, PT III, 2017, 10403 : 397 - 426
  • [30] AN IMPROVED LOWER BOUND ON THE SIZE OF KAKEYA SETS OVER FINITE FIELDS
    Saraf, Shubhangi
    Sudan, Madhu
    ANALYSIS & PDE, 2008, 1 (03): : 375 - 379