Investigation of COVID-19 Misinformation in Arabic on Twitter: Content Analysis

被引:9
|
作者
Al-Rawi, Ahmed [1 ,2 ]
Fakida, Abdelrahman [1 ]
Grounds, Kelly [1 ]
机构
[1] Simon Fraser Univ, Sch Commun, Burnaby, BC, Canada
[2] Simon Fraser Univ, Schrum Sci Ctr, Sch Commun, K 9653, Burnaby, BC V5A 1S6, Canada
来源
JMIR INFODEMIOLOGY | 2022年 / 2卷 / 02期
关键词
COVID-19; Arab world; Twitter; misinformation; vaccination; infodemiology; vaccine hesitancy; infoveillance; health information; social media; social media content; content analysis; Twitter analysis; FAKE NEWS;
D O I
10.2196/37007
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Background: The COVID-19 pandemic has been occurring concurrently with an infodemic of misinformation about the virus. Spreading primarily on social media, there has been a significant academic effort to understand the English side of this infodemic. However, much less attention has been paid to the Arabic side. Objective: There is an urgent need to examine the scale of Arabic COVID-19 disinformation. This study empirically examines how Arabic speakers use specific hashtags on Twitter to express antivaccine and antipandemic views to uncover trends in their social media usage. By exploring this topic, we aim to fill a gap in the literature that can help understand conspiracies in Arabic around COVID-19. Methods: This study used content analysis to understand how 13 popular Arabic hashtags were used in antivaccine communities. We used Twitter Academic API v2 to search for the hashtags from the beginning of August 1, 2006, until October 10, 2021. After downloading a large data set from Twitter, we identified major categories or topics in the sample data set using emergent coding. Emergent coding was chosen because of its ability to inductively identify the themes that repeatedly emerged from the data set. Then, after revising the coding scheme, we coded the rest of the tweets and examined the results. In the second attempt and with a modified codebook, an acceptable intercoder agreement was reached (Krippendorff alpha >=.774). Results: In total, we found 476,048 tweets, mostly posted in 2021. First, the topic of infringing on civil liberties (n=483, 41.1%) covers ways that governments have allegedly infringed on civil liberties during the pandemic and unfair restrictions that have been imposed on unvaccinated individuals. Users here focus on topics concerning their civil liberties and freedoms, claiming that governments violated such rights following the pandemic. Notably, users denounce government efforts to force them to take any of the COVID-19 vaccines for different reasons. This was followed by vaccine-related conspiracies (n=476, 40.5%), including a Deep State dictating pandemic policies, mistrusting vaccine efficacy, and discussing unproven treatments. Although users tweeted about a range of different conspiracy theories, mistrusting the vaccine's efficacy, false or exaggerated claims about vaccine risks and vaccine-related diseases, and governments and pharmaceutical companies profiting from vaccines and intentionally risking the general public health appeared the most. Finally, calls for action (n=149, 12.6%) encourage individuals to participate in civil demonstrations. These calls range from protesting to encouraging other users to take action about the vaccine mandate. For each of these categories, we also attempted to trace the logic behind the different categories by exploring different types of conspiracy theories for each category. Conclusions: Based on our findings, we were able to identify 3 prominent topics that were prevalent amongst Arabic speakers on Twitter. These categories focused on violations of civil liberties by governments, conspiracy theories about the vaccines, and calls for action. Our findings also highlight the need for more research to better understand the impact of COVID-19 disinformation on the Arab world. (JMIR Infodemiology 2022;2(2):e37007) doi: 10.2196/37007
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Twitter Analysis of Covid-19 Misinformation in Spain
    Saby, Diego
    Philippe, Olivier
    Buslon, Nataly
    del Valle, Javier
    Puig, Oriol
    Salaverria, Ramon
    Jose Rementeria, Maria
    COMPUTATIONAL DATA AND SOCIAL NETWORKS, CSONET 2021, 2021, 13116 : 267 - 278
  • [2] CMTA: COVID-19 Misinformation Multilingual Analysis on Twitter
    Pranesh, Raj Ratn
    Farokhnejad, Mehrdad
    Shekhar, Ambesh
    Vargas-Solar, Genoveva
    ACL-IJCNLP 2021: THE 59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING: PROCEEDINGS OF THE STUDENT RESEARCH WORKSHOP, 2021, : 270 - 283
  • [3] An exploratory study of COVID-19 misinformation on Twitter
    Shahi G.K.
    Dirkson A.
    Majchrzak T.A.
    Online Social Networks and Media, 2021, 22
  • [4] Misinformation Dissemination in Twitter in the COVID-19 Era
    Krittanawong, Chayakrit
    Narasimhan, Bharat
    Virk, Hafeez Ul Hassan
    Narasimhan, Harish
    Hahn, Joshua
    Wang, Zhen
    Tang, W. H. Wilson
    AMERICAN JOURNAL OF MEDICINE, 2020, 133 (12): : 1367 - 1369
  • [5] COVID-19 and Misinformation: A Large-Scale Lexical Analysis on Twitter
    Antypas, Dimosthenis
    Rogers, David
    Preece, Alun
    Camacho-Collados, Jose
    ACL-IJCNLP 2021: THE 59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING: PROCEEDINGS OF THE STUDENT RESEARCH WORKSHOP, 2021, : 119 - 126
  • [6] An analysis of AstraZeneca COVID-19 vaccine misinformation and fear mongering on Twitter
    Jemielniak, D.
    Krempovych, Y.
    PUBLIC HEALTH, 2021, 200 : 4 - 6
  • [7] The Influence of Provaping "Gatewatchers" on the Dissemination of COVID-19 Misinformation on Twitter: Analysis of Twitter Discourse Regarding Nicotine and the COVID-19 Pandemic
    Silver, Nathan
    Kierstead, Elexis
    Kostygina, Ganna
    Tran, Hy
    Briggs, Jodie
    Emery, Sherry
    Schillo, Barbara
    JOURNAL OF MEDICAL INTERNET RESEARCH, 2022, 24 (09)
  • [8] Discussions and Misinformation About Electronic Nicotine Delivery Systems and COVID-19: Qualitative Analysis of Twitter Content
    Sidani, Jaime E.
    Hoffman, Beth
    Colditz, Jason B.
    Wolynn, Riley
    Hsiao, Lily
    Chu, Kar-Hai
    Rose, Jason J.
    Shensa, Ariel
    Davis, Esa
    Primack, Brian
    JMIR FORMATIVE RESEARCH, 2022, 6 (04)
  • [9] Machine Learning in Detecting COVID-19 Misinformation on Twitter
    Alenezi, Mohammed N.
    Alqenaei, Zainab M.
    FUTURE INTERNET, 2021, 13 (10)
  • [10] Are Mutated Misinformation More Contagious? A Case Study of COVID-19 Misinformation on Twitter
    Yan, Muheng
    Lin, Yu-Ru
    Chung, Wen-Ting
    PROCEEDINGS OF THE 14TH ACM WEB SCIENCE CONFERENCE, WEBSCI 2022, 2022, : 336 - 347