Acoustic and optical phonon scattering in a single In(Ga)As quantum dot

被引:51
|
作者
Stock, Erik [1 ]
Dachner, Matthias-Rene [2 ]
Warming, Till [1 ]
Schliwa, Andrei [1 ]
Lochmann, Anatol [1 ]
Hoffmann, Axel [1 ]
Toropov, Aleksandr I. [3 ]
Bakarov, Askhat K. [3 ]
Derebezov, Ilya A. [3 ]
Richter, Marten [2 ,4 ]
Haisler, Vladimir A. [3 ]
Knorr, Andreas [2 ]
Bimberg, Dieter [1 ]
机构
[1] Tech Univ Berlin, Inst Festkorperphys, D-10623 Berlin, Germany
[2] Tech Univ Berlin, Inst Theoret Phys, D-10623 Berlin, Germany
[3] Russian Acad Sci, Inst Semicond Phys, Novosibirsk 630090, Russia
[4] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA
关键词
EMITTERS; CARRIER;
D O I
10.1103/PhysRevB.83.041304
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Coupling of acoustic and optical phonons to excitons in single InGaAs/GaAs quantum dots is investigated in detail experimentally and theoretically as a function of temperature. For the theoretical description of the luminescence spectrum, including acoustic and optical phonon scattering, we used the exactly solvable independent boson model. Surprisingly, only GaAs bulk-type longitudinal-optical (LO) phonons are detected in experiment. A quantitatively correct theoretical description of the optical-phonon replica is obtained by including a limited lifetime of the phonons and the dispersion of the LO phonon energy. Similarly, a numerically correct description of the acoustic phonon wings is again based on GaAs bulk material parameters for the phonon dispersion and deformation coupling. In addition, the line shape of the calculated spectra agrees with experiment only when realistic wave functions (e. g., based on eight-band k . p theory) are used for the electron-phonon coupling matrix elements. Gaussian wave functions describing the ground state of a harmonic oscillator fail to describe high-energy tails. Thus, fundamental insights of importance for the correct prediction of properties of nonclassical light sources, based on semiconductor nanostructures, are obtained.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Optical phonon modes and electron-phonon interaction in a spheroidal quantum dot
    Ishida, M.
    Yamaguchi, M.
    Sawaki, N.
    NONEQUILIBRIUM CARRIER DYNAMICS IN SEMICONDUCTORS PROCEEDINGS, 2006, 110 : 253 - +
  • [22] SINGLE LONGITUDINAL-MODE OPTICAL PHONON-SCATTERING IN GA0.47IN0.53AS
    PEARSALL, TP
    CARLES, R
    PORTAL, JC
    APPLIED PHYSICS LETTERS, 1983, 42 (05) : 436 - 438
  • [23] Single-electron-phonon interaction in a suspended quantum dot phonon cavity
    Weig, EM
    Blick, RH
    Brandes, T
    Kirschbaum, J
    Wegscheider, W
    Bichler, M
    Kotthaus, JP
    PHYSICAL REVIEW LETTERS, 2004, 92 (04) : 4
  • [24] Influence of the optical-acoustic phonon hybridization on phonon scattering and thermal conductivity
    Li, Wu
    Carrete, Jesus
    Madsen, Georg K. H.
    Mingo, Natalio
    PHYSICAL REVIEW B, 2016, 93 (20)
  • [25] Exciton acoustic-phonon coupling in single In0.4Ga0.6As/GaAs quantum rings
    Triki, M.
    Jaziri, S.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2017, 254 (07):
  • [26] Generation of squeezed phonon states by optical excitation of a quantum dot
    Reiter, D. E.
    Sauer, S.
    Huneke, J.
    Papenkort, T.
    Kuhn, T.
    Vagov, A.
    Axt, V. M.
    16TH INTERNATIONAL CONFERENCE ON ELECTRON DYNAMICS IN SEMICONDUCTORS, OPTOELECTRONICS AND NANOSTRUCTURES (EDISON 16), 2009, 193
  • [27] ACOUSTIC-PHONON SCATTERING IN A RECTANGULAR QUANTUM-WIRE
    MICKEVICIUS, R
    MITIN, V
    PHYSICAL REVIEW B, 1993, 48 (23): : 17194 - 17201
  • [28] QUANTUM-LIMIT MAGNETORESISTANCE FOR ACOUSTIC-PHONON SCATTERING
    ARORA, VK
    CASSIDAY, DR
    SPECTOR, HN
    PHYSICAL REVIEW B, 1977, 15 (12): : 5996 - 5998
  • [29] Electron optical phonon interaction in equilateral triangular quantum dot and quantum wire
    Zuo, Zheng-Wei
    Xie, Hong-Jing
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (40)
  • [30] Phonon effects in quantum dot single-photon sources
    Denning, Emil, V
    Iles-Smith, Jake
    Gregersen, Niels
    Mork, Jesper
    OPTICAL MATERIALS EXPRESS, 2020, 10 (01) : 222 - 239