Gelatin-polysaccharide composite scaffolds for 3D cell culture and tissue engineering: Towards natural therapeutics

被引:275
|
作者
Afewerki, Samson [1 ,2 ]
Sheikhi, Amir [1 ,2 ,3 ,4 ,5 ]
Kannan, Soundarapandian [1 ,2 ,6 ]
Ahadian, Samad [3 ,4 ,5 ]
Khademhosseini, Ali [1 ,2 ,3 ,4 ,5 ,7 ,8 ,9 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Dept Med, Biomat Innovat Res Ctr,Div Biomed Engn, Cambridge, MA 02142 USA
[2] MIT, Harvard Mit Div Hlth Sci & Technol, Cambridge, MA 02139 USA
[3] Univ Calif Los Angeles, C MIT, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Calif NanoSyst Inst CNSI, Los Angeles, CA 90095 USA
[5] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA 90095 USA
[6] Periyar Univ, Dept Zool, Nanomed Div, Salem, Tamil Nadu, India
[7] Univ Calif Los Angeles, David Geffen Sch Med, Dept Radiol Sci, Los Angeles, CA 90095 USA
[8] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA
[9] Konkuk Univ, Coll Anim Biosci & Technol, Dept Bioind Technol, Seoul, South Korea
基金
美国国家卫生研究院; 加拿大健康研究院;
关键词
3D cell culture; gelatin; polysaccharides; scaffold; therapeutics; tissue engineering; CHITOSAN/GELATIN POROUS SCAFFOLDS; ROTATING WALL VESSEL; HYALURONIC-ACID; IN-VITRO; DRUG-DELIVERY; STEM-CELLS; BACTERIAL CELLULOSE; NANOFIBRILLAR CELLULOSE; CHONDROITIN SULFATE; MOLECULAR-WEIGHT;
D O I
10.1002/btm2.10124
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Gelatin is a promising material as scaffold with therapeutic and regenerative characteristics due to its chemical similarities to the extracellular matrix (ECM) in the native tissues, biocompatibility, biodegradability, low antigenicity, cost-effectiveness, abundance, and accessible functional groups that allow facile chemical modifications with other biomaterials or biomolecules. Despite the advantages of gelatin, poor mechanical properties, sensitivity to enzymatic degradation, high viscosity, and reduced solubility in concentrated aqueous media have limited its applications and encouraged the development of gelatin-based composite hydrogels. The drawbacks of gelatin may be surmounted by synergistically combining it with a wide range of polysaccharides. The addition of polysaccharides to gelatin is advantageous in mimicking the ECM, which largely contains proteoglycans or glycoproteins. Moreover, gelatin-polysaccharide biomaterials benefit from mechanical resilience, high stability, low thermal expansion, improved hydrophilicity, biocompatibility, antimicrobial and anti-inflammatory properties, and wound healing potential. Here, we discuss how combining gelatin and polysaccharides provides a promising approach for developing superior therapeutic biomaterials. We review gelatin-polysaccharides scaffolds and their applications in cell culture and tissue engineering, providing an outlook for the future of this family of biomaterials as advanced natural therapeutics.
引用
收藏
页码:96 / 115
页数:20
相关论文
共 50 条
  • [42] Cell-Laden 3D Printed Scaffolds for Bone Tissue Engineering
    Piard C.M.
    Chen Y.
    Fisher J.P.
    Clinical Reviews in Bone and Mineral Metabolism, 2015, 13 (4): : 245 - 255
  • [43] 3D-printed fish gelatin scaffolds for cartilage tissue engineering
    Maihemuti, Abudureheman
    Zhang, Han
    Lin, Xiang
    Wang, Yangyufan
    Xu, Zhihong
    Zhang, Dagan
    Jiang, Qing
    BIOACTIVE MATERIALS, 2023, 26 : 77 - 87
  • [44] Curved and Folded Micropatterns in 3D Cell Culture and Tissue Engineering
    Yilmaz, Cem Onat
    Xu, Zinnia S.
    Gracias, David H.
    MICROPATTERNING IN CELL BIOLOGY, PT C, 2014, 121 : 121 - +
  • [45] Multiscale porosity in a 3D printed gellan-gelatin composite for bone tissue engineering
    Gupta, Deepak
    Vashisth, Priya
    Bellare, Jayesh
    BIOMEDICAL MATERIALS, 2021, 16 (03)
  • [46] Production of Composite Scaffold Containing Silk Fibroin, Chitosan, and Gelatin for 3D Cell Culture and Bone Tissue Regeneration
    Li, Jianqing
    Wang, Qiuke
    Gu, Yebo
    Zhu, Yu
    Chen, Liang
    Chen, Yunfeng
    MEDICAL SCIENCE MONITOR, 2017, 23 : 5311 - 5320
  • [47] Poly(3-hydroxybutyrate)-based composite 3D printed scaffolds for tissue engineering applications
    Manouras, Vasileios
    Theodoridis, Konstantinos
    Arampatzis, Athanasios
    Kyrilas, Evangelos
    Kampasakali, Elli
    Tsivintzelis, Ioannis
    Tsalikis, Lazaros
    Papanikolaou, Christina
    Chatzidoukas, Christos
    Barmpalexis, Panagiotis
    Christofilos, Dimitrios
    Assimopoulou, Andreana
    PLANTA MEDICA, 2023, 89 (14) : 1428 - 1428
  • [48] 3D culture of neural stem cells within conductive PEDOT layer-assembled chitosan/gelatin scaffolds for neural tissue engineering
    Wang, Shuping
    Guan, Shui
    Li, Wenfang
    Ge, Dan
    Xu, Jianqiang
    Sun, Changkai
    Liu, Tianqing
    Ma, Xuehu
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2018, 93 : 890 - 901
  • [49] One step 3D printing of surface functionalized composite scaffolds for tissue engineering applications
    Kotlarz, Marcin
    Jordan, Rainer
    Wegener, Erik
    Dobrzynski, Piotr
    Neunzehn, Joerg
    Lederer, Albena
    Wolf-Brandstetter, Cornelia
    Pamula, Elzbieta
    Scharnweber, Dieter
    ACTA OF BIOENGINEERING AND BIOMECHANICS, 2018, 20 (02) : 35 - 45
  • [50] 3D printing of PCL-ceramic composite scaffolds for bone tissue engineering applications
    Parupelli, Santosh Kumar
    Saudi, Sheikh
    Bhattarai, Narayan
    Desai, Salil
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2023, 9 (06) : 539 - 551