Subsampled support vector regression ensemble for short term electric load forecasting

被引:71
|
作者
Li, Yanying [1 ]
Che, Jinxing [2 ,3 ]
Yang, Youlong [2 ]
机构
[1] Baoji Univ Arts & Sci, Coll Math & Informat Sci, Baoji 721013, Shaanxi, Peoples R China
[2] Xidian Univ, Sch Math & Stat, 266 Xinglong Sect Xifeng Rd, Xian 710126, Shaanxi, Peoples R China
[3] NanChang Inst Technol, Sch Sci, Nanchang 330099, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Electric load forecasting; Subsampling; Support vector regression; Ensemble; Prediction confidence level; FEATURE-SELECTION; ALGORITHM; SYSTEM;
D O I
10.1016/j.energy.2018.08.169
中图分类号
O414.1 [热力学];
学科分类号
摘要
Accurate prediction of short-term electric load is critical for power system planning and operation. However, integration of the point estimation into the power system is constrained by its uncertainty nature and low interpretability for confidence level. For this propose, this study derives and tests methods to model and forecast short term load point estimation and its confidence interval length by using Subsampled support vector regression ensemble (SSVRE). To improve the computational accuracy and efficiency, a subsampling strategy is designed for the programming implementation of the support vector regression (SVR) learning process. This subsampling strategy ensures that each individual SVR ensemble has enough diversity. Then, for model selection, we present a novel swarm optimization learning based on all the individual SVR ensembles. The advantage of swarm coordination learning is that we can ensure that each individual SVR ensemble has enough strength for forecasting the short term load data. Theoretically, the latest research shows that formal statistical inference procedures can be determined for small size subsamples based ensemble. In practice, a subset of small size subsamples is employed for the speeding-up of SVR learning process. Accordingly, the results indicate the better performance and lower uncertainty of SSVRE model in forecasting short term electric load. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:160 / 170
页数:11
相关论文
共 50 条
  • [31] Application of nuSupport Vector Regression in Short-Term Load Forecasting
    Omidi, Adnan
    Barakati, S. Masoud
    Tavakoli, Saeed
    2015 20TH CONFERENCE ON ELECTRICAL POWER DISTRIBUTION NETWORKS CONFERENCE (EPDC), 2015, : 32 - 36
  • [32] Short-Term Load Forecasting Model Based on Online Sequential Extreme Support Vector Regression
    Jiang M.
    Gu D.
    Kong J.
    Tian Y.
    Jiang, Min (minjiang@jiangnan.edu.cn), 2018, Power System Technology Press (42): : 2240 - 2247
  • [33] Very Short-Term Load Forecasting Using Hybrid Algebraic Prediction and Support Vector Regression
    Capuno, Marlon
    Kim, Jung-Su
    Song, Hwachang
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [34] Short-term load forecasting based on correlation coefficient and weighted support vector regression machine
    Liu, Limei
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND MANAGEMENT INNOVATION, 2015, 28 : 1077 - 1081
  • [35] Short-Term Load Forecasting Using Support Vector Regression-Based Local Predictor
    Li, M. S.
    Wu, J. L.
    Ji, T. Y.
    Wu, Q. H.
    Zhu, L.
    2015 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, 2015,
  • [36] Short-term Load Forecasting using Support Vector Regression Based on Pattern-base
    Guo, Ying-Chun
    Niu, Dong-Xiao
    2009 FIRST ASIAN CONFERENCE ON INTELLIGENT INFORMATION AND DATABASE SYSTEMS, 2009, : 336 - 340
  • [37] A Hybrid Rough Sets and Support Vector Regression Approach to Short-Term Electricity Load Forecasting
    Fang Ruiming
    2008 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, VOLS 1-11, 2008, : 3289 - 3293
  • [38] A method for short term load forecasting using support vector regression model and hybrid evolutionary algorithm
    Wang, Xuan
    Lv, Jiake
    Wei, Chaofu
    Xie, Deti
    ICIC Express Letters, 2012, 6 (11): : 2933 - 2941
  • [39] Short-term Load Forecasting Based on Support Vector Regression with Improved Grey Wolf Optimizer
    Jiang, Feng
    Peng, Zijun
    He, Jiaqi
    PROCEEDINGS OF 2018 TENTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2018, : 807 - 812
  • [40] An Ensemble of Multi-objective Optimized Fuzzy Regression Models for Short-term Electric Load Forecasting
    Vantuch, Tomas
    Prilepok, Michal
    2017 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2017, : 1703 - 1709