DETERMINATION OF AN UNKNOWN SOURCE TERM TEMPERATURE DISTRIBUTION FOR THE SUB-DIFFUSION EQUATION AT THE INITIAL AND FINAL DATA

被引:0
|
作者
Kirane, Mokhtar [1 ,2 ,3 ]
Samet, Bessem [4 ]
Torebek, Berikbol T. [5 ,6 ]
机构
[1] Univ La Rochelle, Fac Sci Pole Sci & Technol, LaSIE, Ave M Crepeau, F-17042 La Rochelle, France
[2] King Abdulaziz Univ, Dept Math, Fac Sci, NAAM Res Grp, POB 80203, Jeddah 21589, Saudi Arabia
[3] RUDN Univ, 6 Miklukho Maklay St, Moscow 117198, Russia
[4] King Saud Univ, Dept Math, Coll Sci, POB 2455, Riyadh 11451, Saudi Arabia
[5] Inst Math & Math Modeling, Dept Differential Equat, 125 Pushkin Str, Alma Ata 050010, Kazakhstan
[6] Al Farabi Kazakh Natl Univ, 71 Al Farabi Ave, Alma Ata 050040, Kazakhstan
关键词
Inverse problem; involution; nonlocal sub-diffusion equation; fractional-time diffusion equation; DENSITY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a class of problems modeling the process of determining the temperature and density of nonlocal sub-diffusion sources given by initial and finite temperature. Their mathematical statements involve inverse problems for the fractional-time heat equation in which, solving the equation, we have to find the an unknown right-hand side depending only on the space variable. The results on existence and uniqueness of solutions of these problems are presented.
引用
收藏
页数:13
相关论文
共 50 条