On the Moduli of Orthogonal Bundles on a Nodal Hyperelliptic Curve

被引:0
|
作者
Bhosle, Usha N. [1 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Bombay 400005, Maharashtra, India
来源
关键词
VECTOR BUNDLES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a complete irreducible hyperelliptic curve of arithmetic genus g with an ordinary node as its only singularity. We find explicit descriptions of the moduli spaces of rank 4 orthogonal bundles with a Z/2Z-action (and of a certain fixed topological type) on X in terms of spaces associated to the singular pencil of quadrics determined by X.
引用
收藏
页码:43 / 52
页数:10
相关论文
共 50 条
  • [21] Moduli space of parabolic vector bundles on a curve
    Bhosle, Usha N.
    Biswas, Indranil
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2012, 53 (02): : 437 - 449
  • [22] Derived Category and ACM Bundles of Moduli Space of Vector Bundles on a Curve
    Lee, Kyoung-Seog
    Moon, Han-Bom
    FORUM OF MATHEMATICS SIGMA, 2023, 11
  • [23] Irreducibility of the moduli space of orthogonal instanton bundles on Pn
    Andrade, Aline V.
    Marchesi, Simone
    Miro-Roig, Rosa M.
    REVISTA MATEMATICA COMPLUTENSE, 2020, 33 (01): : 271 - 294
  • [24] Brauer group of moduli of principal bundles over a curve
    Biswas, Indranil
    Holla, Yogish I.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 677 : 225 - 249
  • [25] A CONJECTURE OF HAUSEL ON THE MODULI SPACE OF HIGGS BUNDLES ON A CURVE
    Heinloth, Jochen
    ASTERISQUE, 2015, (370) : 157 - 175
  • [26] The Picard group of the moduli of G-bundles on a curve
    Beauville, A
    Laszlo, Y
    Sorger, C
    COMPOSITIO MATHEMATICA, 1998, 112 (02) : 183 - 216
  • [27] Quantized moduli spaces of the bundles on the elliptic curve and their applications
    Feigin, BL
    Odesskii, AV
    INTEGRABLE STRUCTURES OF EXACTLY SOLVABLE TWO-DIMENSIONAL MODELS OF QUANTUM FIELD THEORY, 2001, 35 : 123 - 137
  • [28] Automorphisms of moduli spaces of vector bundles over a curve
    Biswas, Indranil
    Gomez, Tomas L.
    Munoz, Vicente
    EXPOSITIONES MATHEMATICAE, 2013, 31 (01) : 73 - 86
  • [29] Some moduli stacks of symplectic bundles on a curve are rational
    Biswas, Indranil
    Hoffmann, Norbert
    ADVANCES IN MATHEMATICS, 2008, 219 (04) : 1150 - 1176
  • [30] On the Voevodsky motive of the moduli space of Higgs bundles on a curve
    Victoria Hoskins
    Simon Pepin Lehalleur
    Selecta Mathematica, 2021, 27