NAVIER-STOKES EQUATIONS PARADOX

被引:0
|
作者
Ramm, Alexander G. [1 ]
机构
[1] Kansas State Univ, Dept Math, Manhattan, KS 66506 USA
关键词
Navier-Stokes problem; Navier-Stokes paradox;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is proved that if the Navier-Stokes problem is considered in R-3, then the initial velocity has to be zero. This is the paradox. The consequences of this paradox are: a) The NSP is contradictory physically and mathematically; it is not a correct formulation of the problem of motion of the incompressible viscous fluid. b) The solution to the NSP does not exist on [0, infinity). This solves one of the millennium problems.
引用
收藏
页码:41 / 45
页数:5
相关论文
共 50 条
  • [31] On discrete Stokes and Navier-Stokes equations in the plane
    Gürlebeck, K
    Hommel, A
    CLIFFORD ALGEBRAS: APPLICATIONS TO MATHEMATICS, PHYSICS, AND ENGINEERING, 2004, 34 : 35 - 58
  • [32] The Stokes and Navier-Stokes equations in an aperture domain
    Kubo, Takayuki
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2007, 59 (03) : 837 - 859
  • [33] Stokes problem for the generalized Navier-Stokes equations
    Bourchtein, A
    Bourchtein, L
    COMPUTATIONAL SCIENCE-ICCS 2002, PT III, PROCEEDINGS, 2002, 2331 : 813 - 819
  • [34] Euler equations, Navier-Stokes equations and turbulence
    Constantin, Peter
    MATHEMATICAL FOUNDATION OF TURBULENT VISCOUS FLOWS, 2006, 1871 : 1 - 43
  • [35] On the Convergence of Solutions of Globally Modified Navier-Stokes Equations with Delays to Solutions of Navier-Stokes Equations with Delays
    Marin-Rubio, Pedro
    Real, Jose
    Marquez-Duran, Antonio M.
    ADVANCED NONLINEAR STUDIES, 2011, 11 (04) : 917 - 927
  • [36] Convergence of compressible Navier-Stokes-Maxwell equations to incompressible Navier-Stokes equations
    Yang JianWei
    Wang Shu
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (10) : 2153 - 2162
  • [37] Convergence of compressible Navier-Stokes-Maxwell equations to incompressible Navier-Stokes equations
    JianWei Yang
    Shu Wang
    Science China Mathematics, 2014, 57 : 2153 - 2162
  • [38] Convergence of compressible Navier-Stokes-Maxwell equations to incompressible Navier-Stokes equations
    YANG JianWei
    WANG Shu
    ScienceChina(Mathematics), 2014, 57 (10) : 2153 - 2162
  • [39] Nonlinear control of Navier-Stokes equations
    Christofides, PD
    Armaou, A
    PROCEEDINGS OF THE 1998 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1998, : 1355 - 1359
  • [40] Stochastic cascades and Navier-Stokes equations
    LeJan, Y
    Sznitman, AS
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (07): : 823 - 826