Thermal lattice Boltzmann method for complex microflows

被引:4
|
作者
Yasuoka, Haruka [1 ]
Kaneda, Masayuki [1 ]
Suga, Kazuhiko [1 ]
机构
[1] Osaka Prefecture Univ, Dept Mech Engn, Naka Ku, 1-1 Gakuen Cho, Sakai, Osaka 5998531, Japan
关键词
NONEQUILIBRIUM FLOWS; TRANSITION REGIME; MODEL; TEMPERATURE; SIMULATION; ACCURACY;
D O I
10.1103/PhysRevE.94.013102
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A methodology to simulate thermal fields in complex microflow geometries is proposed. For the flow fields, the regularized multiple-relaxation-time lattice Boltzmann method (LBM) is applied coupled with the diffusive-bounce-back boundary condition for wall boundaries. For the thermal fields, the regularized lattice Bhatnagar-Gross-Krook model is applied. For the thermal wall boundary condition, a newly developed boundary condition, which is a mixture of the diffuse scattering and constant temperature conditions, is applied. The proposed set of schemes is validated by reference data in the Fourier flows and square cylinder flows confined in a microchannel. The obtained results confirm that it is essential to apply the regularization to the thermal LBM for avoiding kinked temperature profiles in complex thermal flows. The proposed wall boundary condition is successful to obtain thermal jumps at the walls with good accuracy.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Lattice Boltzmann simulation of complex thermal flows via a simplified immersed boundary method
    Tao, Shi
    Wang, Liang
    He, Qing
    Chen, Jiechao
    Luo, Jiahong
    JOURNAL OF COMPUTATIONAL SCIENCE, 2022, 65
  • [22] Simulating two- and three-dimensional microflows by the lattice Boltzmann method with kinetic boundary conditions
    Tang, G. H.
    Tao, W. Q.
    He, Y. L.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2007, 18 (05): : 805 - 817
  • [23] Chemical efficiency of reactive microflows with heterogeneous catalysis: a lattice Boltzmann study
    Succi, S
    Gabrielli, A
    Smith, G
    Kaxiras, E
    EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2001, 16 (01): : 71 - 84
  • [24] Applications of the lattice Boltzmann method to complex and turbulent flows
    Luo, LS
    Qi, D
    Wang, LP
    HIGH PERFORMANCE SCIENTIFIC AND ENGINEERING COMPUTING, 2002, 21 : 123 - 130
  • [25] Finite volume formulation of thermal lattice Boltzmann method
    Zarghami, Ahad
    Ubertini, Stefano
    Succi, Sauro
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2014, 24 (02) : 270 - 289
  • [26] A ghost fluid Lattice Boltzmann method for complex geometries
    Tiwari, A.
    Vanka, S. P.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2012, 69 (02) : 481 - 498
  • [27] Boundary conditions for thermal lattice Boltzmann equation method
    Li, Like
    Mei, Renwei
    Klausner, James F.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 237 : 366 - 395
  • [28] Entropic lattice Boltzmann method for simulation of thermal flows
    Prasianakis, N. I.
    Chikatamarla, S. S.
    Karlin, I. V.
    Ansumali, S.
    Boulouchos, K.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2006, 72 (2-6) : 179 - 183
  • [29] Simplified finite difference thermal lattice Boltzmann method
    Azwadi, C. S. Nor
    Tanahashi, T.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2008, 22 (22): : 3865 - 3876
  • [30] Thermal fluctuations in the lattice Boltzmann method for nonideal fluids
    Gross, M.
    Adhikari, R.
    Cates, M. E.
    Varnik, F.
    PHYSICAL REVIEW E, 2010, 82 (05):