An Adaptive Control Algorithm for Stable Training of Generative Adversarial Networks

被引:7
|
作者
Ma, Xiaohan [1 ]
Jin, Rize [2 ]
Sohn, Kyung-Ah [1 ]
Paik, Joon-Young [2 ]
Chung, Tae-Sun [1 ]
机构
[1] Ajou Univ, Dept Comp Engn, Suwon 16499, South Korea
[2] Tianjin Polytech Univ, Sch Comp Sci & Technol, Tianjin 300160, Peoples R China
来源
IEEE ACCESS | 2019年 / 7卷
基金
新加坡国家研究基金会;
关键词
Generative adversarial networks; image generation; adaptive algorithm; mode collapse;
D O I
10.1109/ACCESS.2019.2960461
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Generative adversarial networks (GANs) have shown significant progress in generating high-quality visual samples, however they are still well known both for being unstable to train and for the problem of mode collapse, particularly when trained on data collections containing a diverse set of visual objects. In this paper, we propose an Adaptive-step Generative Adversarial Network (-GAN), which is designed to mitigate the impact of instability and saturation in the original by dynamically adjusting the ratio of the training steps of both the generator and discriminator. To accomplish this, we track and analyze stable training curves of relatively narrow datasets and use them as the target fitting lines when training more diverse data collections. Furthermore, we conduct experiments on the proposed procedure using several optimization techniques (e.g., supervised guiding from previous stable learning curves with and without momentum) and compare their performance with that of state-of-the-art models on the task of image synthesis from datasets consisting of diverse images. Empirical results demonstrate that Ak-GAN works well in practice and exhibits more stable behavior than regular GANs during training. A quantitative evaluation has been conducted on the Inception Score (IS) and the relative inverse Inception Score (RIS); compared with regular GANs, the former has been improved by 61% and 83%, and the latter by 21% and 60%, on the CelebA and the Anime datasets, respectively.
引用
收藏
页码:184103 / 184114
页数:12
相关论文
共 50 条
  • [41] Training of Generative Adversarial Networks with Hybrid Evolutionary Optimization Technique
    Korde, Charudatta G.
    Reddy, Manikantta K.
    Vasantha, M. H.
    Kumar, Nithin Y. B.
    2019 IEEE 16TH INDIA COUNCIL INTERNATIONAL CONFERENCE (IEEE INDICON 2019), 2019,
  • [42] Improved Training of Generative Adversarial Networks Using Decision Forests
    Zuo, Yan
    Avraham, Gil
    Drummond, Tom
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WACV 2021, 2021, : 3491 - 3500
  • [43] Evaluating POWER Architecture for Distributed Training of Generative Adversarial Networks
    Hesam, Ahmad
    Vallecorsa, Sofia
    Khattak, Gulrukh
    Carminati, Federico
    HIGH PERFORMANCE COMPUTING: ISC HIGH PERFORMANCE 2019 INTERNATIONAL WORKSHOPS, 2020, 11887 : 432 - 440
  • [44] PolicyGAN: Training generative adversarial networks using policy gradient
    Paria, Biswajit
    Lahiri, Avisek
    Biswas, Prabir Kumar
    2017 NINTH INTERNATIONAL CONFERENCE ON ADVANCES IN PATTERN RECOGNITION (ICAPR), 2017, : 151 - 156
  • [45] Improved Training of Generative Adversarial Networks using Representative Features
    Bang, Duhyeon
    Shim, Hyunjung
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [46] Generative Adversarial Networks
    Goodfellow, Ian
    Pouget-Abadie, Jean
    Mirza, Mehdi
    Xu, Bing
    Warde-Farley, David
    Ozair, Sherjil
    Courville, Aaron
    Bengio, Yoshua
    COMMUNICATIONS OF THE ACM, 2020, 63 (11) : 139 - 144
  • [47] Ecological Analogy for Generative Adversarial Networks and Diversity Control
    Nakazato, Kenichi
    JOURNAL OF PHYSICS-COMPLEXITY, 2023, 4 (01):
  • [48] Adaptive Traffic Data Augmentation Using Generative Adversarial Networks for Optical Networks
    Li, Shuai
    Li, Jin
    Zhang, Min
    Wang, Danshi
    Song, Chuang
    Zhen, Xinghua
    2019 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC), 2019,
  • [49] A Face Inpainting Algorithm with Local Attribute Generative Adversarial Networks
    Jiang B.
    Liu H.
    Yang C.
    Tu W.
    Zhao Z.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2019, 56 (11): : 2485 - 2493
  • [50] Super-resolution Deblurring Algorithm for Generative Adversarial Networks
    Tian, Bing
    Yan, Wentao
    Wang, Wei
    Su, Qi
    Liu, Yin
    Liu, Guangxiu
    Wang, Wanguo
    2017 SECOND INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE), 2017, : 135 - 140