A class of algebraic-trigonometric blended splines

被引:27
|
作者
Yan, Lanlan [1 ]
Liang, Jiongfeng [2 ]
机构
[1] E China Inst Technol, Coll Math & Informat Sci, Fuzhou 344000, Peoples R China
[2] E China Inst Technol, Coll Civil & Environm Engn, Fuzhou 344000, Peoples R China
关键词
Trigonometric basis; Spline curve; Shape parameter; Tangent polygon; Curve interpolation; C-CURVES; BEZIER;
D O I
10.1016/j.cam.2010.09.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a new kind of algebraic-trigonometric blended spline curve, called xyB curves, generated over the space {1, t, sin t, cos t, sin(2) t, sin(3) t, cos(3) t}. The new curves not only inherit most properties of usual cubic B-spline curves in polynomial space, but also enjoy some other advantageous properties for modeling. For given control points, the shape of the new curves can be adjusted by using the parameters x and y. When the control points and the parameters are chosen appropriately, the new curves can represent some conics and transcendental curves. In addition, we present methods of constructing an interpolation xyB-spline curve and an xyB-spline curve which is tangent to the given control polygon. The generation of tensor product surfaces by these new spline curves is straightforward. Many properties of the curves can be easily extended to the surfaces. The new surfaces can exactly represent the rotation surfaces as well as the surfaces with elliptical or circular sections. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1713 / 1729
页数:17
相关论文
共 50 条
  • [1] An algebraic-trigonometric blended piecewise curve
    Yan, Lanlan
    Huang, Tao
    Wen, Rongsheng
    Journal of Information and Computational Science, 2015, 12 (17): : 6491 - 6501
  • [2] Manipulator Trajectory Planning Based on the Algebraic-Trigonometric Hermite Blended Interpolation Spline
    Su, Benyue
    Zou, Liping
    2012 INTERNATIONAL WORKSHOP ON INFORMATION AND ELECTRONICS ENGINEERING, 2012, 29 : 2093 - 2097
  • [3] Design of C2 algebraic-trigonometric pythagorean hodograph splines with shape parameters
    Gonzalez, C.
    Albrecht, G.
    Paluszny, M.
    Lentini, M.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (02): : 1472 - 1495
  • [4] On algebraic trigonometric integro splines
    Eddargani, Salah
    Lamnii, Abdellah
    Lamnii, Mohamed
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2020, 100 (02):
  • [5] Algebraic-Trigonometric Cubic Hermite Curve with a Shape Parameter
    Zhong, Yue-e
    Li, Juncheng
    Xie, Chun
    Yang, Lian
    Liu, Chunying
    COMMUNICATIONS AND INFORMATION PROCESSING, PT 2, 2012, 289 : 476 - 483
  • [6] Algebraic-trigonometric mixed Hermite interpolation and the error estimation
    Lu, Jian-fang
    Dai, Ning
    Zhengzhou Daxue Xuebao/Journal of Zhengzhou University, 2000, 32 (01): : 26 - 29
  • [7] Approximating smooth functions using algebraic-trigonometric polynomials
    Sharapudinov, I. I.
    SBORNIK MATHEMATICS, 2010, 201 (11) : 1689 - 1713
  • [8] Algebraic-Trigonometric Pythagorean-Hodograph space curves
    Romani, Lucia
    Montagner, Francesca
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (01) : 75 - 98
  • [9] Algebraic-Trigonometric Pythagorean-Hodograph space curves
    Lucia Romani
    Francesca Montagner
    Advances in Computational Mathematics, 2019, 45 : 75 - 98
  • [10] CLASS OF CARDINAL TRIGONOMETRIC SPLINES
    SHARMA, A
    TZIMBALARIO, J
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1976, 7 (06) : 809 - 819