Algebraic-trigonometric mixed Hermite interpolation and the error estimation

被引:0
|
作者
Lu, Jian-fang
Dai, Ning
机构
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The function f(x) is approximated by interpolation function fn(x) = a cos kx+b sin kx+qq[cihi(x) +c over-bar ih over-bar i(x)] such that f(xi) = fn(xi) and f prime (xi) = f prime n(xi) (i = 0, 1, ..., n). fn(x) is proved to be unique and is tending to Hermite interpolation polynomials H2n+1(f, x) as the parameter k-&gt0. The error term is also discussed, and as an application, a class of extended linear multistep methods of Adams' type for equidistant point are established.
引用
收藏
页码:26 / 29
相关论文
共 50 条
  • [1] Algebraic-Trigonometric Pythagorean-Hodograph curves and their use for Hermite interpolation
    Romani, Lucia
    Saini, Laura
    Albrecht, Gudrun
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2014, 40 (5-6) : 977 - 1010
  • [2] Geometric Hermite interpolation by a family of spatial algebraic-trigonometric PH curves
    Wu, Weidong
    Yang, Xunnian
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 388
  • [3] Algebraic-Trigonometric Pythagorean-Hodograph curves and their use for Hermite interpolation
    Lucia Romani
    Laura Saini
    Gudrun Albrecht
    Advances in Computational Mathematics, 2014, 40 : 977 - 1010
  • [4] Manipulator Trajectory Planning Based on the Algebraic-Trigonometric Hermite Blended Interpolation Spline
    Su, Benyue
    Zou, Liping
    2012 INTERNATIONAL WORKSHOP ON INFORMATION AND ELECTRONICS ENGINEERING, 2012, 29 : 2093 - 2097
  • [5] Algebraic-Trigonometric Cubic Hermite Curve with a Shape Parameter
    Zhong, Yue-e
    Li, Juncheng
    Xie, Chun
    Yang, Lian
    Liu, Chunying
    COMMUNICATIONS AND INFORMATION PROCESSING, PT 2, 2012, 289 : 476 - 483
  • [6] A class of algebraic-trigonometric blended splines
    Yan, Lanlan
    Liang, Jiongfeng
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (06) : 1713 - 1729
  • [7] An algebraic-trigonometric blended piecewise curve
    Yan, Lanlan
    Huang, Tao
    Wen, Rongsheng
    Journal of Information and Computational Science, 2015, 12 (17): : 6491 - 6501
  • [8] On G1 and G2 Hermite interpolation by spatial Algebraic-Trigonometric Pythagorean Hodograph curves with polynomial parametric speed
    Bay, Thierry
    Cattiaux-Huillard, Isabelle
    Romani, Lucia
    Saini, Laura
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 458
  • [9] ESTIMATION OF HERMITE INTERPOLATION ERROR IN RN
    GOUT, JL
    NUMERISCHE MATHEMATIK, 1977, 28 (04) : 407 - 429
  • [10] Trigonometric wavelets for hermite interpolation
    Quak, E
    MATHEMATICS OF COMPUTATION, 1996, 65 (214) : 683 - 722