Gauge symmetry in Fokker-Planck dynamics

被引:4
|
作者
de Montigny, M
Khanna, FC
Santana, AE
机构
[1] Univ Alberta, Fac St Jean, Edmonton, AB T6C 4G9, Canada
[2] Univ Alberta, Inst Theoret Phys, Edmonton, AB T6G 2J1, Canada
[3] TRIUMF, Vancouver, BC V6T 2A3, Canada
[4] Univ Fed Bahia, Inst Fis, BR-40210340 Salvador, BA, Brazil
关键词
Fokker-Planck equation; symmetry in field theory; Riemannian geometry;
D O I
10.1016/S0378-4371(03)00041-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using a Galilean metric approach, based on an embedding of the Euclidean space into a (4 + 1)-Minkowski space, we analyze a gauge invariant Lagrangian associated with a Riemannian manifold R, with metric g. With a specific choice of the gauge condition, the Euler-Lagrange equations are written covariantly in R, and then the Fokker-Planck equation is derived, such that the drift and the diffusion terms are obtained from g. The analysis is carried out for both, Abelian and non-Abelian symmetries, and an example with the su(2) symmetry is presented. (C)) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:327 / 335
页数:9
相关论文
共 50 条
  • [21] φ-Entropies: convexity, coercivity and hypocoercivity for Fokker-Planck and kinetic Fokker-Planck equations
    Dolbeault, Jean
    Li, Xingyu
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (13): : 2637 - 2666
  • [22] Galilei-invariant gauge symmetries in Fokker-Planck dynamics with logarithmic diffusion and drift terms
    Cardeal, J. A.
    de Montigny, M.
    Khanna, F. C.
    Rocha Filho, T. M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (44) : 13467 - 13478
  • [23] Derivation of a Fokker-Planck equation for generalized Langevin dynamics
    Khan, S
    Reynolds, AM
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 350 (2-4) : 183 - 188
  • [24] FOKKER-PLANCK EQUATION IN THE SPIN-GLASS DYNAMICS
    KOLLEY, E
    KOLLEY, W
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1986, 134 (01): : 147 - 152
  • [25] Stochastic dynamics and Fokker-Planck equation in accelerator physics
    Mais, H
    Zorzano, MP
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1999, 112 (05): : 467 - 474
  • [26] Fluctuation theorems for systems under Fokker-Planck dynamics
    Perez-Madrid, A.
    Santamaria-Holek, I.
    PHYSICAL REVIEW E, 2009, 79 (01):
  • [27] STATIONARY FOKKER-PLANCK EQUATION APPLIED TO FISSION DYNAMICS
    NIX, JR
    SIERK, AJ
    HOFMANN, H
    SCHEUTER, F
    VAUTHERIN, D
    NUCLEAR PHYSICS A, 1984, 424 (02) : 239 - 261
  • [28] COLLECTIVE MOTIONS AND NONPOLYNOMIAL LAGRANGIANS IN FOKKER-PLANCK DYNAMICS
    SPINA, A
    VUCETICH, H
    PHYSICAL REVIEW A, 1987, 36 (06): : 2914 - 2928
  • [29] Influence of the periodic potential shape on the Fokker-Planck dynamics
    Chhib, M
    El Arroum, L
    Mazroui, M
    Boughaleb, Y
    Ferrando, R
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 331 (3-4) : 365 - 377
  • [30] FOKKER-PLANCK DYNAMICS APPROACH TO LANGEVIN-EQUATIONS
    SANCHO, JM
    SANMIGUEL, M
    PROGRESS OF THEORETICAL PHYSICS, 1980, 63 (01): : 62 - 71