Deep Learning Strategies for Quantitative Biomedical Microwave Imaging

被引:0
|
作者
Autorino, Maria Maddalena [1 ]
Franceschini, Stefano [1 ]
Ambrosanio, Michele [1 ]
Baselice, Fabio [1 ]
Pascazio, Vito [1 ]
机构
[1] Univ Naples Parthenope, Dept Engn, Naples, Italy
关键词
Microwave tomography; breast imaging; electromagnetic inverse scattering; neural networks; deep learning; MIMO systems;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a numerical performance assessment of the recovery capabilities in the framework of microwave imaging via deep learning approaches. More in detail, aim of the analysis is the comparison among different convolutional neural network architectures in order to understand the impact of each parameter on the recovery performance for quantitative imaging. To support the analysis, some quality metrics were evaluated and a comparison with a conventional nonlinear approach is considered. The results seem promising, both in terms of computational time and recovery accuracy, especially in very noisy scenarios with a limited amount of data.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] A Microwave Imaging Model for Biomedical Applications
    Ozgun, Ozlem
    Kuzuoglu, Mustafa
    2017 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION & USNC/URSI NATIONAL RADIO SCIENCE MEETING, 2017, : 2373 - 2374
  • [22] Matching Medium for Biomedical Microwave Imaging
    Lui, Hoi-Shun
    Fhager, Andreas
    Persson, Mikael
    2015 INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION (ISAP), 2015,
  • [23] Improving Quantitative Magnetic Resonance Imaging Using Deep Learning
    Liu, Fang
    SEMINARS IN MUSCULOSKELETAL RADIOLOGY, 2020, 24 (04) : 451 - 459
  • [24] Deep learning assisted variational Hilbert quantitative phase imaging
    Zhuoshi Li
    Jiasong Sun
    Yao Fan
    Yanbo Jin
    Qian Shen
    Maciej Trusiak
    Maria Cywińska
    Peng Gao
    Qian Chen
    Chao Zuo
    Opto-Electronic Science, 2023, 2 (04) : 4 - 15
  • [25] Quantitative Imaging of Body Fat Distribution in the Era of Deep Learning
    Kim, Sungheon Gene
    ACADEMIC RADIOLOGY, 2021, 28 (11) : 1488 - 1490
  • [26] Deep Learning in Biomedical Optics
    Tian, Lei
    Hunt, Brady
    Bell, Muyinatu A. Lediju
    Yi, Ji
    Smith, Jason T.
    Ochoa, Marien
    Intes, Xavier
    Durr, Nicholas J.
    LASERS IN SURGERY AND MEDICINE, 2021, 53 (06) : 748 - 775
  • [27] Learning-Based Quantitative Microwave Imaging With a Hybrid Input Scheme
    Zhang, Lu
    Xu, Kuiwen
    Song, Rencheng
    Ye, Xiuzhu
    Wang, Gaofeng
    Chen, Xudong
    IEEE SENSORS JOURNAL, 2020, 20 (24) : 15007 - 15013
  • [28] A Deep Learning Method to Process Scattered Field Data in Biomedical Imaging System
    Jing Wang
    Naike Du
    Xiuzhu Ye
    Journal of Beijing Institute of Technology, 2024, 33 (03) : 213 - 218
  • [29] A Deep Learning Method to Process Scattered Field Data in Biomedical Imaging System
    Wang, Jing
    Du, Naike
    Ye, Xiuzhu
    Journal of Beijing Institute of Technology (English Edition), 2024, 33 (03): : 213 - 218
  • [30] Perspective on biomedical quantitative ultrasound imaging
    Mamou, J
    Oelze, ML
    O'Brien, WD
    Zachary, JF
    IEEE SIGNAL PROCESSING MAGAZINE, 2006, 23 (03) : 112 - 116