Large eddy simulation/dynamic thickened flame modeling of a high Karlovitz number turbulent premixed jet flame

被引:41
|
作者
Han, Wang [1 ]
Wang, Haiou [2 ]
Kuenne, Guido [3 ]
Hawkes, Evatt R. [2 ]
Chen, Jacqueline H. [4 ]
Janicka, Johannes [3 ]
Hasse, Christian [1 ]
机构
[1] Tech Univ Darmstadt, Inst Simulat React Thermofluid Syst, D-64287 Darmstadt, Germany
[2] Univ New South Wales, Sch Mech & Mfg Engn, Sydney, NSW 2052, Australia
[3] Tech Univ Darmstadt, Inst Energy & Power Plant Technol, D-64287 Darmstadt, Germany
[4] Sandia Natl Labs, Livermore, CA 94550 USA
基金
澳大利亚研究理事会;
关键词
High Karlovitz number; Large eddy simulation; Dynamic thickened flame; Strained premixed flamelet model; Pollutant emissions; FINITE-RATE CHEMISTRY; STRAINED FLAMELETS; NUMERICAL-ANALYSIS; WRINKLING MODEL; LES; COMBUSTION; FORMULATION; PREDICTION; TRANSPORT; CH4/AIR;
D O I
10.1016/j.proci.2018.06.228
中图分类号
O414.1 [热力学];
学科分类号
摘要
Due to the complex multiscale interaction between intense turbulence and relatively weak flames, turbulent premixed flames in the thin and broken reaction zones regimes exhibit strong finite-rate chemistry and strain effects and are hence challenging to model. In this work, a laboratory premixed jet flame in the broken reaction zone, which has recently been studied using direct numerical simulation (DNS), is modeled using a large eddy simulation (LES)/dynamic thickened flame (DTF) approach with detailed chemistry. The presence of substantial flame thickening due to strong turbulence-chemistry interactions, which can be characterized by a high Karlovitz number (Ka), requires the DTF model to thicken the flame in an adaptive way based on the local resolution of flame scales. Here, an appropriate flame sensor and strain-sensitive flame thickness are used to automatically determine the thickening location and thickening factor, respectively. To account for finite-rate chemistry and strain effects, the chemistry is described in two different ways: (1) detailed chemistry denoted as full transport and chemistry (FTC), and (2) tabulated chemistry based on a strained premixed flamelet (SPF) model. The performance of the augmented LES/DTF approach for modeling the high Ka premixed flame is assessed through detailed a posteriori comparisons with DNS of the same flame. It is found that the LES/DTF/FTC model is capable of reproducing most features of the high Ka turbulent premixed flame including accurate CO and NO prediction. The LES/DTF/SPF model has the potential to capture the impact of strong turbulence on the flame structure and provides reasonable prediction of pollutant emissions at a reasonable computational cost. In order to identify the impact of aerodynamic strain, the turbulent flame structure is analyzed and compared with unstrained and strained premixed flamelet solutions. The results indicate that detailed strain effects should be considered when using tabulated methods to model high Ka premixed flames. (C) 2018 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:2555 / 2563
页数:9
相关论文
共 50 条
  • [21] LARGE EDDY SIMULATION OF PREMIXED COMBUSTION WITH A THICKENED-FLAME APPROACH
    De, Ashoke
    Acharya, Sumanta
    [J]. PROCEEDINGS OF THE ASME TURBO EXPO 2008, VOL 3, PTS A AND B, 2008, : 1021 - 1034
  • [22] Large eddy simulation of soot formation in a turbulent non-premixed jet flame
    El-Asrag, Hossam
    Menon, Suresh
    [J]. COMBUSTION AND FLAME, 2009, 156 (02) : 385 - 395
  • [23] Large eddy simulation of turbulent premixed flame in turbulent channel flow
    Ko, Sang Cheol
    Park, Nam Seob
    [J]. JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2006, 20 (08) : 1240 - 1247
  • [24] Large eddy simulation of turbulent premixed flame in turbulent channel flow
    Sang Cheol Ko
    Nam Seob Park
    [J]. Journal of Mechanical Science and Technology, 2006, 20 : 1240 - 1247
  • [25] Large eddy simulation of a lifted turbulent jet flame
    Ferraris, S. A.
    Wen, J. X.
    [J]. COMBUSTION AND FLAME, 2007, 150 (04) : 320 - 339
  • [26] Direct numerical simulations of a high Karlovitz number laboratory premixed jet flame - an analysis of flame stretch and flame thickening
    Wang, Haiou
    Hawkes, Evatt R.
    Chen, Jacqueline H.
    Zhou, Bo
    Li, Zhongshan
    Alden, Marcus
    [J]. JOURNAL OF FLUID MECHANICS, 2017, 815 : 511 - 536
  • [27] Large Eddy Simulation of a turbulent non-premixed flame
    Branley, N
    Jones, WP
    [J]. COMBUSTION AND FLAME, 2001, 127 (1-2) : 1914 - 1934
  • [28] Large eddy simulation of turbulent strongly swirling premixed flame
    Yang, Fan
    Lin, Bo-Ying
    Sui, Chun-Jie
    Kong, Wen-Jun
    [J]. Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2015, 36 (04): : 895 - 900
  • [29] Flame behaviour and flame location in large-eddy simulation of the turbulent premixed combustion
    Alhumairi, Mohammed K. H. Abbas
    Almahdawi, Yasseen A.
    Nawi, Sami A.
    [J]. ENERGY, 2021, 232
  • [30] Large eddy simulation of a growing turbulent premixed flame kernel using a dynamic flame surface density model
    Wang, Gaofeng
    Boileau, Matthieu
    Veynante, Denis
    Truffin, Karine
    [J]. COMBUSTION AND FLAME, 2012, 159 (08) : 2742 - 2754