Numerical resolution of a highly anisotropic two-dimensional elliptic problem by a parameterization method. We introduce a numerical method for solving an anisotropic elliptic problem. We address the case where the direction of the anisotropy varies, and the anisotropy is high. A finite volume scheme is implemented to solve the problem for small anisotropy ratio, then the parameterization method consists in devising an extrapolation of the solution of the anisotropic problem by combining solutions of a sequence of isotropic problems. (C) 2003 Academie des sciences. Publie par Editions scientifiques et medicales Elsevier SAS. Tous droits reserves.
机构:
Lanzhou Univ, Coll Civil Engn & Mech, Lanzhou 730000, Gansu, Peoples R China
Lanzhou Univ, Key Lab Mech Disaster & Environm Western China, Minist Educ China, Lanzhou 730000, Gansu, Peoples R ChinaLanzhou Univ, Coll Civil Engn & Mech, Lanzhou 730000, Gansu, Peoples R China
Liu, Zhijun
Zhang, Peng
论文数: 0引用数: 0
h-index: 0
机构:
Henan Univ Technol, Coll Civil Engn & Architecture, Zhengzhou 450001, Henan, Peoples R ChinaLanzhou Univ, Coll Civil Engn & Mech, Lanzhou 730000, Gansu, Peoples R China
Zhang, Peng
Sun, Cong
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Municipal Construct Grp Co Ltd, Wuhan 430023, Hubei, Peoples R ChinaLanzhou Univ, Coll Civil Engn & Mech, Lanzhou 730000, Gansu, Peoples R China
Sun, Cong
Liu, Feng
论文数: 0引用数: 0
h-index: 0
机构:
Tianjin Univ, Sch Civil Engn, State Key Lab Hydraul Engn Simulat & Safety, Tianjin 300072, Peoples R ChinaLanzhou Univ, Coll Civil Engn & Mech, Lanzhou 730000, Gansu, Peoples R China