The Nehari manifold for the Schrodinger-Poisson systems with steep well potential

被引:2
|
作者
Lou, Qing-Jun [1 ]
Han, Zhi-Qing [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian, Peoples R China
关键词
Schrodinger-Poisson equation; concave-convex nonlinearities; concentration; steep well potential; POSITIVE SOLUTIONS; EXISTENCE; MULTIPLICITY; EQUATIONS;
D O I
10.1080/17476933.2018.1471070
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, via variational methods, we consider the existence and concentration of positive solutions for a system of Schrodinger-Poisson equation involving concave-convex nonlinearities under some suitable assumptions of weight functions.
引用
收藏
页码:586 / 605
页数:20
相关论文
共 50 条
  • [21] Existence and concentration behavior of solutions for the logarithmic Schrodinger-Poisson system with steep potential
    Peng, Xueqin
    Jia, Gao
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (01):
  • [22] SCHRODINGER-POISSON SYSTEMS WITH SINGULAR POTENTIAL AND CRITICAL EXPONENT
    Liu, Senli
    Chen, Haibo
    Feng, Zhaosheng
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2020,
  • [23] Dissipative Schrodinger-Poisson systems
    Baro, M
    Kaiser, HC
    Neidhardt, H
    Rehberg, J
    JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (01) : 21 - 43
  • [24] Groundstates of the planar Schrodinger-Poisson system with potential well and lack of symmetry
    Liu, Zhisu
    Radulescu, Vicentiu D.
    Zhang, Jianjun
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2024, 154 (04) : 993 - 1023
  • [25] Ground states of planar Schrodinger-Poisson systems with an unbounded potential
    Du, Miao
    Xu, Jiaxin
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (04):
  • [26] The Schrodinger-Poisson System with Positive Potential
    Mugnai, Dimitri
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (07) : 1099 - 1117
  • [27] On the nonlinear Schrodinger-Poisson systems with sign-changing potential
    Sun, Juntao
    Wu, Tsung-fang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (04): : 1649 - 1669
  • [28] CONCENTRATION PHENOMENA AT SADDLE POINTS OF POTENTIAL FOR SCHRODINGER-POISSON SYSTEMS
    Cassani, Daniele
    Vilasi, Luca
    Zhang, Jianjun
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (04) : 1737 - 1754
  • [29] Schrodinger-Poisson system with singular potential
    Jiang, Yongsheng
    Zhou, Huan-Song
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 417 (01) : 411 - 438
  • [30] SEMICLASSICAL LIMIT AND WELL-POSEDNESS OF NONLINEAR SCHRODINGER-POISSON SYSTEMS
    Li, Hailiang
    Lin, Chi-Kun
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2003,